Big data and big cities: the promises and limitations of improved measures of urban life
New, "big" data sources allow measurement of city characteristics and outcome variables higher frequencies and finer geographic scales than ever before. However, big data will not solve large urban social science questions on its own. Big data has the most value for the study of cities whe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, MA
National Bureau of Economic Research
December 2015
|
Schriftenreihe: | NBER working paper series
21778 |
Online-Zugang: | Volltext |
Zusammenfassung: | New, "big" data sources allow measurement of city characteristics and outcome variables higher frequencies and finer geographic scales than ever before. However, big data will not solve large urban social science questions on its own. Big data has the most value for the study of cities when it allows measurement of the previously opaque, or when it can be coupled with exogenous shocks to people or place. We describe a number of new urban data sources and illustrate how they can be used to improve the study and function of cities. We first show how Google Street View images can be used to predict income in New York City, suggesting that similar image data can be used to map wealth and poverty in previously unmeasured areas of the developing world. We then discuss how survey techniques can be improved to better measure willingness to pay for urban amenities. Finally, we explain how Internet data is being used to improve the quality of city services |
Beschreibung: | 37 Seiten Diagramme |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043354140 | ||
003 | DE-604 | ||
005 | 20160524 | ||
007 | t | ||
008 | 160210s2015 |||| |||| 00||| eng d | ||
035 | |a (DE-599)BVBBV043354140 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-M382 | ||
100 | 1 | |a Glaeser, Edward L. |d 1967- |0 (DE-588)124526373 |4 aut | |
245 | 1 | 0 | |a Big data and big cities |b the promises and limitations of improved measures of urban life |c Edward L. Glaeser, Scott Duke Kominers, Michael Luca, Nikhil Naik |
264 | 1 | |a Cambridge, MA |b National Bureau of Economic Research |c December 2015 | |
300 | |a 37 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a NBER working paper series |v 21778 | |
520 | |a New, "big" data sources allow measurement of city characteristics and outcome variables higher frequencies and finer geographic scales than ever before. However, big data will not solve large urban social science questions on its own. Big data has the most value for the study of cities when it allows measurement of the previously opaque, or when it can be coupled with exogenous shocks to people or place. We describe a number of new urban data sources and illustrate how they can be used to improve the study and function of cities. We first show how Google Street View images can be used to predict income in New York City, suggesting that similar image data can be used to map wealth and poverty in previously unmeasured areas of the developing world. We then discuss how survey techniques can be improved to better measure willingness to pay for urban amenities. Finally, we explain how Internet data is being used to improve the quality of city services | ||
700 | 1 | |a Kominers, Scott Duke |0 (DE-588)142048429 |4 aut | |
700 | 1 | |a Luca, Michael |0 (DE-588)1082312142 |4 aut | |
700 | 1 | |a Naik, Nikhil |0 (DE-588)1082312320 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.3386/w21778 |
830 | 0 | |a NBER working paper series |v 21778 |w (DE-604)BV002801238 |9 21778 | |
856 | 4 | 1 | |u http://www.nber.org/papers/w21778 |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028773553 |
Datensatz im Suchindex
_version_ | 1804175910039977984 |
---|---|
any_adam_object | |
author | Glaeser, Edward L. 1967- Kominers, Scott Duke Luca, Michael Naik, Nikhil |
author_GND | (DE-588)124526373 (DE-588)142048429 (DE-588)1082312142 (DE-588)1082312320 |
author_facet | Glaeser, Edward L. 1967- Kominers, Scott Duke Luca, Michael Naik, Nikhil |
author_role | aut aut aut aut |
author_sort | Glaeser, Edward L. 1967- |
author_variant | e l g el elg s d k sd sdk m l ml n n nn |
building | Verbundindex |
bvnumber | BV043354140 |
collection | ebook |
ctrlnum | (DE-599)BVBBV043354140 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02205nam a2200337 cb4500</leader><controlfield tag="001">BV043354140</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160524 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160210s2015 |||| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043354140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M382</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glaeser, Edward L.</subfield><subfield code="d">1967-</subfield><subfield code="0">(DE-588)124526373</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Big data and big cities</subfield><subfield code="b">the promises and limitations of improved measures of urban life</subfield><subfield code="c">Edward L. Glaeser, Scott Duke Kominers, Michael Luca, Nikhil Naik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA</subfield><subfield code="b">National Bureau of Economic Research</subfield><subfield code="c">December 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">37 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">NBER working paper series</subfield><subfield code="v">21778</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">New, "big" data sources allow measurement of city characteristics and outcome variables higher frequencies and finer geographic scales than ever before. However, big data will not solve large urban social science questions on its own. Big data has the most value for the study of cities when it allows measurement of the previously opaque, or when it can be coupled with exogenous shocks to people or place. We describe a number of new urban data sources and illustrate how they can be used to improve the study and function of cities. We first show how Google Street View images can be used to predict income in New York City, suggesting that similar image data can be used to map wealth and poverty in previously unmeasured areas of the developing world. We then discuss how survey techniques can be improved to better measure willingness to pay for urban amenities. Finally, we explain how Internet data is being used to improve the quality of city services</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kominers, Scott Duke</subfield><subfield code="0">(DE-588)142048429</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luca, Michael</subfield><subfield code="0">(DE-588)1082312142</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naik, Nikhil</subfield><subfield code="0">(DE-588)1082312320</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.3386/w21778</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">NBER working paper series</subfield><subfield code="v">21778</subfield><subfield code="w">(DE-604)BV002801238</subfield><subfield code="9">21778</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://www.nber.org/papers/w21778</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028773553</subfield></datafield></record></collection> |
id | DE-604.BV043354140 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:23:47Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028773553 |
open_access_boolean | |
owner | DE-M382 |
owner_facet | DE-M382 |
physical | 37 Seiten Diagramme |
psigel | ebook |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | National Bureau of Economic Research |
record_format | marc |
series | NBER working paper series |
series2 | NBER working paper series |
spelling | Glaeser, Edward L. 1967- (DE-588)124526373 aut Big data and big cities the promises and limitations of improved measures of urban life Edward L. Glaeser, Scott Duke Kominers, Michael Luca, Nikhil Naik Cambridge, MA National Bureau of Economic Research December 2015 37 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier NBER working paper series 21778 New, "big" data sources allow measurement of city characteristics and outcome variables higher frequencies and finer geographic scales than ever before. However, big data will not solve large urban social science questions on its own. Big data has the most value for the study of cities when it allows measurement of the previously opaque, or when it can be coupled with exogenous shocks to people or place. We describe a number of new urban data sources and illustrate how they can be used to improve the study and function of cities. We first show how Google Street View images can be used to predict income in New York City, suggesting that similar image data can be used to map wealth and poverty in previously unmeasured areas of the developing world. We then discuss how survey techniques can be improved to better measure willingness to pay for urban amenities. Finally, we explain how Internet data is being used to improve the quality of city services Kominers, Scott Duke (DE-588)142048429 aut Luca, Michael (DE-588)1082312142 aut Naik, Nikhil (DE-588)1082312320 aut Erscheint auch als Online-Ausgabe 10.3386/w21778 NBER working paper series 21778 (DE-604)BV002801238 21778 http://www.nber.org/papers/w21778 Volltext |
spellingShingle | Glaeser, Edward L. 1967- Kominers, Scott Duke Luca, Michael Naik, Nikhil Big data and big cities the promises and limitations of improved measures of urban life NBER working paper series |
title | Big data and big cities the promises and limitations of improved measures of urban life |
title_auth | Big data and big cities the promises and limitations of improved measures of urban life |
title_exact_search | Big data and big cities the promises and limitations of improved measures of urban life |
title_full | Big data and big cities the promises and limitations of improved measures of urban life Edward L. Glaeser, Scott Duke Kominers, Michael Luca, Nikhil Naik |
title_fullStr | Big data and big cities the promises and limitations of improved measures of urban life Edward L. Glaeser, Scott Duke Kominers, Michael Luca, Nikhil Naik |
title_full_unstemmed | Big data and big cities the promises and limitations of improved measures of urban life Edward L. Glaeser, Scott Duke Kominers, Michael Luca, Nikhil Naik |
title_short | Big data and big cities |
title_sort | big data and big cities the promises and limitations of improved measures of urban life |
title_sub | the promises and limitations of improved measures of urban life |
url | http://www.nber.org/papers/w21778 |
volume_link | (DE-604)BV002801238 |
work_keys_str_mv | AT glaeseredwardl bigdataandbigcitiesthepromisesandlimitationsofimprovedmeasuresofurbanlife AT kominersscottduke bigdataandbigcitiesthepromisesandlimitationsofimprovedmeasuresofurbanlife AT lucamichael bigdataandbigcitiesthepromisesandlimitationsofimprovedmeasuresofurbanlife AT naiknikhil bigdataandbigcitiesthepromisesandlimitationsofimprovedmeasuresofurbanlife |