Introduction to plasma dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL
CRC Press
2013
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | "Beginning with an introduction to the characteristics and types of plasmas, this text covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock waves, stationary flows, elements of plasma chemistry, and principles of plasma lasers. It describes a number of cosmic objects, including planetary vortices and magnetospheres. The book also discusses applied plasma dynamic systems, with special attention given to the history of plasma studies up to the present day. In addition, it reviews problems of controlled thermonuclear synthesis"-- Provided by publisher. Includes bibliographical references and index |
Beschreibung: | xvii, 815 p. ill. 24 cm |
ISBN: | 9781439881323 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV041294598 | ||
003 | DE-604 | ||
005 | 20140409 | ||
007 | t | ||
008 | 130930s2013 xxua||| |||| 00||| eng d | ||
010 | |a 2012041624 | ||
020 | |a 9781439881323 |c hardback |9 978-1-4398-8132-3 | ||
035 | |a (OCoLC)830313487 | ||
035 | |a (DE-599)BVBBV041294598 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 | ||
050 | 0 | |a QC718.5.D9 | |
082 | 0 | |a 530.4/4 | |
084 | |a UR 8000 |0 (DE-625)146642: |2 rvk | ||
100 | 1 | |a Morozov, A. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to plasma dynamics |c A. I. Morozov |
264 | 1 | |a Boca Raton, FL |b CRC Press |c 2013 | |
300 | |a xvii, 815 p. |b ill. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a "Beginning with an introduction to the characteristics and types of plasmas, this text covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock waves, stationary flows, elements of plasma chemistry, and principles of plasma lasers. It describes a number of cosmic objects, including planetary vortices and magnetospheres. The book also discusses applied plasma dynamic systems, with special attention given to the history of plasma studies up to the present day. In addition, it reviews problems of controlled thermonuclear synthesis"-- Provided by publisher. | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Chemie | |
650 | 4 | |a Plasma dynamics | |
650 | 4 | |a Plasma (Ionized gases) | |
650 | 7 | |a SCIENCE / Chemistry / Physical & Theoretical |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics |2 bisacsh | |
650 | 0 | 7 | |a Plasmadynamik |0 (DE-588)4123952-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plasmadynamik |0 (DE-588)4123952-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026743514 |
Datensatz im Suchindex
_version_ | 1804151360645496832 |
---|---|
adam_text | Contents
Foreword
xiii
Introduction
1
1.1. What is plasma?
1
1.2.
Region of rarefied non-relativistic plasma in the coordinates
η, Τ
9
1.3.
History of plasma investigations
[50, 52] 14
1.3.1.
Investigations up to the 30th of the 20th century
14
1.3.2. Investigations and developments in
1930s
and
1940s 18
1-3.3.
Investigations in the
1950s
and
1960s.
Problem of controlled
thermonuclear fusion
21
1.3.4.
Studies in the 50 s and 60 s. The problem of electroreactive thrusters
28
1.3.5.
Other background of plasma dynamics
29
1.4.
Features of plasma research
30
1
Fields, particles, blocks (point models)
1.1.
Electromagnetic fields
35
1.1.1.
Maxwell equations
35
1.1.2.
Conservation laws
38
1.1.3.
Morphology of magnetic fields
43
1.1.4.
Metric characteristics of magnetic fields
54
1.1.5.
Perturbation of the field morphology
55
1.2.
Movement of particles in electromagnetic fields
57
1.2.2.
Movement of the particle in uniform constant electrical and magnetic
fields
59
1.2.3.
Dynamics of particles in constant magnetic and alternating
electrical field
61
1.2.4.
Movement of a particle in
a
nonuniform
high-frequency field
63
1.2.4.
Drift approximation
65
1.2.6.
Ion-optical approximation
68
1.3.
Block ( zero-dimensional ) models of plasma systems
69
1.3.1.
One-component model of a magnetoelectric relsotron
[58] 70
1.3.2.
Fall of a heavy plasma bar in the magnetic field
71
1.4.
Elements of classic corpuscular optics (CCO)
73
1.4.1.
Ion sources
74
1.4.2.
Examples of systems of vacuum corpuscular optics
77
1.5.
Dielectric permittivity and waves in homogeneous cold plasma
86
1.5.1.
Dielectric permittivity
87
1.5.2
Equation for waves in homogeneous plasma
88
1.5.3.
Waves in cold plasma without the magnetic field
90
1.6.
Block models of pulsed plasma systems (pulsed plasma guns
and Z-pinches)
93
1.6.1.
Two-component model of a magnetic-electrical railgun
93
1.6.2.
Electrodynamic model of the railgun
94
l.ó^.Z-pinches
96
1.7.
Simplest models of static magnetic traps
102
1.7.1.
The Budker-Post mirror trap
103
1.7.2.
Toroidal traps
107
2
One-fluid plasma models
2.1.
Special features of hydrodynamic models
114
2.1.1.
Euler
equations
114
2.1.2.
Ensuring autonomous state of the droplet
117
2.1.3.
Two laws of conservation in the flow of an ideal gas
120
2.2.
Examples of
Euler
hydrodynamics problems
122
2.2.1.
Hydro (gas)-statics
123
2.2.2.
Linear waves in a homogeneous gas
123
2.2.3.
Flow of an ideal gas in a thin pipe with a variable section
128
2.2.4.
Shock waves in the ideal gas
132
2.3.
One-fluid magnetic hydrodynamics
(MHD)
135
2.3.1.
MHD
equations
136
2.3.2.
Freezing-in of the magnetic field into plasma
138
2.4.
MHD
statics
141
2.4.1.
General properties of equilibrium
MHD
configurations
141
2.4.2.
One-dimensional equilibrium
MHD
configurations
143
2.4.3.
Two-dimensional (symmetric) configurations. The Grad-Shafranov
equation
146
2.5.
Linear
MHD
waves in homogeneous plasma
152
2.5.1.
Initial equations
152
2.5.2.
Entropy wave
153
2.5.
3.Alfvén
waves
154
2.5.4.
Magnetic sound waves
(MSW)
157
2.6.
Stationary plasma flows in the transverse magnetic field
160
2.6.1.
Flows in narrow channels
161
2.7.
Numerical modelling of
MHD
flows
165
2.7.1.
Calculations of the flow of ideal plasma in an axisymmetric
channel
165
2.7.2.
Shock waves in
MHD
167
2.7.3.
Role of ohmic resistance in the dynamics of highly conducting plasma
169
3
Two-fluid hydrodynamic plasma models
170
3.1.
Equations of two-fluid hydrodynamics
171
3.1.1.
Formulation of the equations
171
3.1.2.
Reduction of the system
(3.1.5) 173
3.1.3.
Relationship of the components of plasma with the magnetic field
176
3.1.4.
Law of conservation of energy in the stationary flows of
two-component plasma
177
3.2.
Electron magnetic hydrodynamics. Generalised Ohm s law
178
3.2.1
.Dimenstonless characteristics of the generalised Ohm s law
178
3.2.2.
Dissipationless electronic component: degenerate Ohm s law ,
* Lorenz
fields
181
3.3.
Hall structures
198
vi
3.4.
Static
configurations
in the two-fluid hydrodynamics
202
3.5.
Linear waves in homogeneous plasma (two-fluid model)
205
3.5.1.
Waves in the absence of the external magnetic field at pr pe
φ
0. 206
3.5.2.
Linear waves in homogeneous plasma at H#^
0
(cold plasma)
212
3.5.3.
Linear waves in homogeneously heated plasma at II
* 0 217
3.5.4.
The simplest two-fluid model of beam instability
218
3.6.
Dissipation-free axial-symmetric flows in the two-component
hydrodynamics
220
3.6.1.
Derivation of the laws of conservation
221
3.6.2.
Qualitative analysis of the system of equations
(3.6.17) 225
3.6.3.
Method of smooth flows for system
(3.6.17) 232
3.6.4.
Analysis of system
(3.6.17)
by the narrow channel method
236
3.7.
Numerical and experimental studies of (quasi-) steady flows in
coaxial systems with the intrinsic magnetic field
237
3.7.1.
Numerical simulation of plasma flows in
coaxiais
with continuous
electrodes
237
3.7.2.
Experimental studies of accelerators with the continuous electrodes
239
3.7.3.
Coaxial quasi-steady high-current plasma accelerator with ionic
current transfer (QHPA)
245
3.7.4.
Quasi-stationary compression flows
250
3.8.
Dynamics of plasma flows in magnetic fields
252
3.8.1.
Movement of auto-polarised plasma flow (bunch) in a transverse
magnetic field
253
3.8.2.
One-dimensional classic diffusion of plasma in a magnetic field
255
3.8.3.
Entry of the plasma flow into the magnetic field
257
4
Collisionless kinetic models of processes in plasma
Vlasov-
Maxwell equations
260
4.1.
Initial concepts
261
4.1.1.
Phase space and the distribution function (DF)
261
4.1.2.
Liouville equation
262
4.1.3.
Relationship between kinetic and hydrodynamic descriptions
265
4.2.
Vlasov-Maxwell equations
269
4.2.1.
Formulation of the system of equations
269
4.2.2.1s the
Vlasov
equations system accurate?
270
4.2.3.
Ну
brid
approximation
272
4.2.
Static kinetic configurations
272
4.3.1.
One-dimensional static kinetic configurations
273
4.3.2.
The inverse Bernstein-Green-Kruskal function
276
4.3.3.
Single-Larmor structures
279
4.4.
Kinetics of waves in plasma at Ho
= 0 284
4.4.1.
Initial equations. Non-stationary Langmuir waves
284
4.4.2.
Laplace transformation
286
4.4.3.
Attenuation and growth of Langmuir waves
290
4.4.4.
Experimental investigations of resonance attenuation
293
4.5.
Oscillations of two-component plasma
295
4.5.1.
Ionic sound
295
4.5.2.
Oscillations in current-carrying plasma (at Ho
= 0) 296
4.6.
Quasi-linear approximation
297
4.6.1.
Derivation of the main equation
297
V»
4.6.2.
Several comments regarding the kinetics of Langmuir waves
299
5
Kinetics of two-component plasma in classic collisions
301
5.1.
Introduction
302
5.2.
Kinetics of colliding charged particles
307
5.2.1.
Main concepts
307
5.2.2.
Coulomb collision: force acting on a test particle
309
5.2.3.
Coulomb collisions: diffusion coefficients
315
5.2.4.
Landau collisional term
318
5.3.
Transfer equations in two-fluid hydrodynamics
319
5.3.1.
Scheme of solving the kinetic equation at frequent collisions
319
5.3.2.
Transfer equations
.
General form
321
5.3.3.
Ideal plasma model
322
5.3.4.
Braginskii equation
323
5.3.5.
Comments on Braginski s equations
326
5.4.
Examples of collisional relaxation in Coulomb plasma
327
5.4.1.
The Belyaev-Budker paradox
327
5.4.2.
Relaxation of a rare flux of fast ions in
isotropie
plasma
327
5.4.3.
Runaway electrons
330
5.4.4.
Relaxation time of distribution functions in the two-component plasma
331
5.5.
Effect of the thermal force on equilibrium and heat transfer in
plasma configuration
333
5.5.1.
Equilibrium configuration of the magnetic shell of the myxine
333
5.5.2.
Heat conductivity in the MSM
336
5.6.
Kinetics of departure of plasma particles from traps
338
5.6.1.
The departure of particles from traps of the anti-mirror type
339
5.6.2.
The departure of the particles from the mirror trap
342
5.6.3.
Neoclassic diffusion in toroidal systems
346
5.6.4.
Confinement of energy and plasma in actual traps. Scaling
348
5.7.
Plasma optics (hybrid models)
350
5.7.1.
General principles of plasma optics
351
5.7.2.
Some special features of plasma optical systems
358
5.7.3.
Expansion of the quasi neutral beam under the effect of electronic
pressure
360
5.8.
Boltzmann—Davy
dov
kinetic equation for electrons in weakly
ionised plasma
363
6
Plasma processes with transformation of particles and radiation
366
6.1.
Introduction
366
6.2.
Velocity of transformation processes
370
6.2.1.
Energy levels
370
6.2.2.
Elastic scattering of electrons on atoms
372
6.2.3.
Excitation and
ionisation
of atoms by an electronic impact
374
6.2.4.
Ion recombination processes
376
6.2.5.
Negati ve
ions
379
6.2.6.
Excitation and
ionisation
of molecules by electronic impact
380
6.2.7.
Interaction of heavy particles
383
6.3.
Elementary radiation processes
384
6.3.1
.Linear radiation spectra
385
viii
6.3.2.
Continuous radiation spectrum
387
6.3.3.
Mechanisms in broadening of spectral lines
389
6.4.
Radiation transition equation (photon kinetics)
395
6.4.1.
Formulation of the transfer equation
395
6.4.2.
Radiation transfer in the conditions close to the equilibrium
400
6.5.
Schemes for describing the dynamics of the particles of
transforming plasma
405
6.5.1.
General characteristic of the models
405
6.5.2.
Two approaches to simplifying the actual situation
406
6.5.3.
Passing systems
409
6.5.4.
Coronal equilibrium
410
6.5.5.
Dynamics of quasi-equilibrium transforming plasma
411
6.5.6.
Diffusion approximation
418
6.5.7.
Equations of dynamics of quasi-equilibrium plasma
420
6.6.
Radiation value of the ion in the coronal model
422
6.7.
Volume processes in stationary plasma thrusters (SPT) and their
similarity laws
423
6.7.1.
General characteristics of processes in the stationary plasma thruster
424
6.8.
Shock waves with radiation
434
6.8.1.
Special features of shock waves with radiation
434
6.8.2.
Results of calculations
435
6.8.3.
Methods of calculating shock waves with the real spectrum
440
6.9.
Flows of ionising plasma in the coaxial
441
6.10.
Glow and arc discharges
445
6.10.1.
General characteristics of glow and arc discharges
446
6.10.2.
Positive column of arc stationary discharge
452
6.10.3.
Quasi-stationary strongly emitting Z-pinches
454
6.11.
Systems using separated excitation levels of particles
455
6.11.1.
Gas discharge and plasma lasers
455
6.11.2.
Special features of plasma chemistry
459
7
Interaction of plasma with the surface of solids
465
7.1.
Introduction
465
7.1.1.
Prandtl-Blasius boundary layer (Navier-Stokes hydrodynamics)
466
7.1.2.
General structure of the plasma-solid transition layer
471
7.1.3.
Emission functions
473
7.2.
Processes on the surface of the solid
477
7.2.1.
Adsorption of warm particles
477
7.2.2.
Interaction of particles with
superthermal
energy with surfaces
481
7.2.3.
Sputtering of surfaces
486
7.2.4.
Emission of electrons from surfaces
492
7.3.
Electron boundary layers
501
7,3.1.Debye layers on dielectric walls
503
7.3.2.
Diffusion boundary layer. Near-wall conductivity
510
7.3.3.
Drift electronic boundary layers
517
7.4.
Examples of boundary processes with heavy particles taking part
520
7.4.1.
Recycling
520
7.4.2.
Discharges, sliding on the dielectric surface
522
7.4.3.
Kinematics of dispersion of the surface and by a monospeed ion flux
525
7.5.
Surface-determined
discharges (using the stationary plasma thruster
as the example
530
7.5.1.
Electron distribution function in the channel of the stationary plasma
thrusters (SPT)
531
7.5.2.
Analytical models of fragments of the EDF
534
7.5.3.
Experimental investigations of near-wall conductivity in the stationary
plasma thruster
[ 173] 537
7.5.4. ???
7.5.5.
Erosion of insulators in the stationary plasma thruster
542
7.6.
Examples of near electrode processes
544
7.6.1.
The McCowan equation
544
7.6.2.
Near-electrode layers in glow and arc discharges
546
7.6.3.
Vicinity of the arc thermal cathode
551
7.6.4.
Spots on the cold cathode
555
7.6.5.
Near-anode layers in glow and arc discharges
558
7.6.6.
Erosion of electrodes and the processes in coaxial (quasi) stationary
accelerators
560
7.7.
Dusty plasma
561
7.7.1
.Charging of macroparticles and their interaction with each other
562
7.7.2.
Linear oscillations in uniform dusty plasma at
H
= 0 565
8
Instabilities and self-organisation of plasma dynamic systems
567
8Д.
Examples of identical hydrodynamic and plasma instabilities
570
8.1.1.
Superheated ^Joule ) instabilities
570
8.1.2.
Convecti
ve
instabilities
572
8.1.3.
Rayleigh-Timofeev hydrodynamic resonance
576
8.1.4.
Transformation of waves
580
8.2.
Examples of specific
MHD
perturbations of plasma systems
584
8.2.1.
Analysis of the stability of
MHD
configurations by the energy method
585
8.2.2,
Reconnection
of magnetic lines of force in plasma. Tearing instability
590
8.2.3.
Hall non-evolution of flat flows of ideal plasma
592
8.2.4.
Drift flows across the magnetic field
596
8.3.
Modelling equations of autonomous plasma structures
( auto-structures )
599
8.3.1.
Korteweg-de
Vries (KdV)
equations.
Solitons 600
8.3.2.
Taking into account attenuation in the KdV equation
606
8.3.3.
Chaplygin-Trubnikov instabilities
607
8.3.4.
The Charney-Obukhov equation
610
8.4.
Stochasticky
of the processes in plasma
615
8.4.1.
Stochasticky
and turbulence
615
8.4.2.
Turbulence
618
8.4.3.
Some special features of plasma turbulence
622
8.4.4.
Anomalous resistance of plasma
[7] 623
8.5.
Active methods of stabilising plasma instabilities
625
9
Processes in cosmos and plasma dynamics
630
9.1.
Planetary vortices. Spiral nebulas
631
9.1.1.
Cyclones and anticyclones. Zone flows
631
9.1.2.
Larmoťs
analogy
634
9.1.3.
Two-dimensional hydrodynamics of thin layers
635
9.1.4.
Rossby parameter
637
Ç.l.S.Nezlin s
analogue experiments
638
9.1.6.
Spiral structures in the galaxies
640
9.1.7.
Installations for the simulation of the spiral structures of galaxies and
experimental results
642
9.2.
Magnetosphere of the Earth
644
9.2.1.
Concept of the magnetosphere
645
9.2.2.
Characteristic properties of the magnetosphere
648
9.2.3.
Radiation belts
654
9.2.4.
Active experiments in the magnetosphere
657
9.2.5.
Simulation of the magnetosphere
661
9.3.
The Sun
662
9.3.1.
Integral characteristics of the Sun
665
9.3.2.
Structure of the visible range of the Sun
666
9.3.3.(^351^^11^^111
structures associated with the photosphere
669
9.3.4.
Catastrophic processes seen on the Sun (flashes, ejections of
coronal mass)
674
9.3.5.
Cyclic recurrence of solar activity
677
9.3.6.
Standard model of the
macrostructure
of the Sun
680
9.4.
On the evolution of the stars of the main sequence
683
10
Examples of
modero
plasma technologies
688
10.1.
Plasma generators
688
10.1.1.
Types of plasma generators
690
10.2.
Plasma in the home
694
10.2.1.
Daylight lamps (fluorescent)
694
1
0.2.2.
Plasma TV panels
695
10.2.3.
The plasma scalpel
696
10.2.4.
Chizhevsky chandelier
698
10.3.
Formation of structures on solids by plasma technology
699
10.3.1.
General characteristics of the plasma processing of materials
699
10.3.2.
Examples of coating technology
702
10.3.3.
The formation of microelectronic circuits
707
10.3.4.
Modification of metal surfaces under the influence of energetic
plasma blobs
709
10.4.
Ion and plasma space propulsion engines
710
10.4.1.
Fundamental shortcoming of thermochemical engines
710
10.4.2.
On the varieties of electric propulsion
713
10.4.3.
Stationary plasma thrusters (SPT)
715
10.4.4.
Promising schemes of
EPE
718
10.5.
The problem of controlled thermonuclear fusion (CTF)
719
10.5.1.
Underlying principles
720
10.5.2.
Lawson curves
722
10.5.3.
Trap circuits
724
10.5.4.
Tokamaks
735
10.6.
From generators of multiply-charged ions to the island of stability
and black holes in the experiment
741
10.6.1.
Sources of multiply-charged (Z
» 1 )
ions
742
10.6.2.
On the way to the island of stability
743
10.6.3.
Black holes* in the laboratory
[274] 752
жі
Appendix
A Comments on the topology of the magnetic field
755
Appendix
В
Inerţial
controlled thermonuclear synthesis using liners
762
Appendix
С
Reconnection of lines offeree in plasma
763
Appendix
D
Ion magnetrons and thrusters with an anodic layer
768
Appendix
E
Tokamaks
as a possible reactor for
D
-Т
synthesis
773
Appendix
F
High
β
in large
tokamaks
784
Appendix
G Ionisation
of atoms and ions by electronic impact
792
Literature
799
Index
809
xii
Physics
INTRODUCTION TO PLASMA DYNAMICS
As the twenty-first century progresses, plasma technology will play an
increasing role in our lives, providing new sources of energy, ion-plasma
processing of materials, wave electromagnetic radiation sources, space
plasma thrusters, and more. Studies of the plasma state of matter not only
accelerate technological developments but also improve the understanding
of natural phenomena. Beginning with an introduction to the characteristics
and types of plasmas, Introduction to Plasma Dynamics covers the
basic models of classical diffuse plasmas used to describe such phenom¬
ena as linear and shock waves, stationary flows, elements of plasma
chemistry, and principles of plasma lasers.
The author presents specific examples to demonstrate how to use the
models and to familiarize readers with modern plasma technologies. The
book describes structures of magnetic fields—one- and zero-dimensional
plasma models. It considers single-, two-, and multi-component simulation
models, kinetics and ionization processes, radiation transport, and plasma
interaction with solid surfaces. The text also examines self-organization
and general problems associated with instabilities in plasma systems. In
addition, it discusses cosmic plasma dynamic systems, such as Earth s
magnetosphere, spiral nebulas, and plasma associated with the Sun.
This text provides wide-range coverage of issues related to plasma dynam¬
ics, with a final chapter addressing advanced plasma technologies, includ¬
ing plasma generators, plasma in the home, space propulsion engines, and
controlled thermonuclear fusion. It demonstrates how to approach the
analysis of complex plasma systems, taking into account the diversity of
plasma environments. Presenting a well-rounded introduction to plasma
dynamics, the book takes into consideration the models of plasma phenom¬
ena and their relationships to one another as well as their applications.
www
Ґ~~ОҐ~
P
ro
Ç Ç
6000
Broken Sou nd Parkway,
NW
^— rV
V—
Г
I
СОЛ
suite
300,
Boca Raton,
FL
33487
Тау
ior &L Francis C
roup
711
Third
Avenue
an informa business New York, NY
1001 7
2
Park
Square,
Milton Park
CrCpreSS.COm Abingdort,
Οχοπ ΟΧΙ
4
4RN,
UK
ISBN:
|
any_adam_object | 1 |
author | Morozov, A. I. |
author_facet | Morozov, A. I. |
author_role | aut |
author_sort | Morozov, A. I. |
author_variant | a i m ai aim |
building | Verbundindex |
bvnumber | BV041294598 |
callnumber-first | Q - Science |
callnumber-label | QC718 |
callnumber-raw | QC718.5.D9 |
callnumber-search | QC718.5.D9 |
callnumber-sort | QC 3718.5 D9 |
callnumber-subject | QC - Physics |
classification_rvk | UR 8000 |
ctrlnum | (OCoLC)830313487 (DE-599)BVBBV041294598 |
dewey-full | 530.4/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/4 |
dewey-search | 530.4/4 |
dewey-sort | 3530.4 14 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02454nam a2200457zc 4500</leader><controlfield tag="001">BV041294598</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140409 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130930s2013 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2012041624</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439881323</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-4398-8132-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)830313487</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041294598</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC718.5.D9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 8000</subfield><subfield code="0">(DE-625)146642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morozov, A. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to plasma dynamics</subfield><subfield code="c">A. I. Morozov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 815 p.</subfield><subfield code="b">ill.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Beginning with an introduction to the characteristics and types of plasmas, this text covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock waves, stationary flows, elements of plasma chemistry, and principles of plasma lasers. It describes a number of cosmic objects, including planetary vortices and magnetospheres. The book also discusses applied plasma dynamic systems, with special attention given to the history of plasma studies up to the present day. In addition, it reviews problems of controlled thermonuclear synthesis"-- Provided by publisher.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma (Ionized gases)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Chemistry / Physical & Theoretical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmadynamik</subfield><subfield code="0">(DE-588)4123952-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmadynamik</subfield><subfield code="0">(DE-588)4123952-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026743514</subfield></datafield></record></collection> |
id | DE-604.BV041294598 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:53:35Z |
institution | BVB |
isbn | 9781439881323 |
language | English |
lccn | 2012041624 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026743514 |
oclc_num | 830313487 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xvii, 815 p. ill. 24 cm |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | CRC Press |
record_format | marc |
spelling | Morozov, A. I. Verfasser aut Introduction to plasma dynamics A. I. Morozov Boca Raton, FL CRC Press 2013 xvii, 815 p. ill. 24 cm txt rdacontent n rdamedia nc rdacarrier "Beginning with an introduction to the characteristics and types of plasmas, this text covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock waves, stationary flows, elements of plasma chemistry, and principles of plasma lasers. It describes a number of cosmic objects, including planetary vortices and magnetospheres. The book also discusses applied plasma dynamic systems, with special attention given to the history of plasma studies up to the present day. In addition, it reviews problems of controlled thermonuclear synthesis"-- Provided by publisher. Includes bibliographical references and index Chemie Plasma dynamics Plasma (Ionized gases) SCIENCE / Chemistry / Physical & Theoretical bisacsh SCIENCE / Physics bisacsh Plasmadynamik (DE-588)4123952-0 gnd rswk-swf Plasmadynamik (DE-588)4123952-0 s DE-604 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Morozov, A. I. Introduction to plasma dynamics Chemie Plasma dynamics Plasma (Ionized gases) SCIENCE / Chemistry / Physical & Theoretical bisacsh SCIENCE / Physics bisacsh Plasmadynamik (DE-588)4123952-0 gnd |
subject_GND | (DE-588)4123952-0 |
title | Introduction to plasma dynamics |
title_auth | Introduction to plasma dynamics |
title_exact_search | Introduction to plasma dynamics |
title_full | Introduction to plasma dynamics A. I. Morozov |
title_fullStr | Introduction to plasma dynamics A. I. Morozov |
title_full_unstemmed | Introduction to plasma dynamics A. I. Morozov |
title_short | Introduction to plasma dynamics |
title_sort | introduction to plasma dynamics |
topic | Chemie Plasma dynamics Plasma (Ionized gases) SCIENCE / Chemistry / Physical & Theoretical bisacsh SCIENCE / Physics bisacsh Plasmadynamik (DE-588)4123952-0 gnd |
topic_facet | Chemie Plasma dynamics Plasma (Ionized gases) SCIENCE / Chemistry / Physical & Theoretical SCIENCE / Physics Plasmadynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026743514&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT morozovai introductiontoplasmadynamics |