Learning and reasoning in hybrid structured spaces /:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands :
IOS Press,
2022.
|
Schriftenreihe: | Frontiers in artificial intelligence and applications ;
v. 350. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource. |
ISBN: | 9781643682679 1643682679 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1317772343 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 220517s2022 ne o 000 0 eng d | ||
040 | |a IOSPR |b eng |e rda |e pn |c IOSPR |d N$T |d EBLCP |d OCLCF |d OCLCQ |d OCLCO |d TMA |d OCLCQ |d UEJ |d OCLCQ | ||
020 | |a 9781643682679 |q (electronic bk.) | ||
020 | |a 1643682679 |q (electronic bk.) | ||
020 | |z 9781643682662 |q (print) | ||
035 | |a (OCoLC)1317772343 | ||
037 | |a 9781643682679 |b IOS Press |n http://www.iospress.nl | ||
050 | 4 | |a Q325.5 | |
082 | 7 | |a 006.3/1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Morettin, Paolo, |e author. | |
245 | 1 | 0 | |a Learning and reasoning in hybrid structured spaces / |c Paolo Morettin. |
264 | 1 | |a Amsterdam, Netherlands : |b IOS Press, |c 2022. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Frontiers in artificial intelligence and applications ; |v volume 350 | |
588 | 0 | |a Online resource; title from] PDF title page (IOS Press, viewed May 17, 2022). | |
505 | 0 | |a Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction | |
505 | 8 | |a Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks | |
505 | 8 | |a MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a Machine learning |2 fast | |
830 | 0 | |a Frontiers in artificial intelligence and applications ; |v v. 350. |0 http://id.loc.gov/authorities/names/n92019289 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3283624 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL29238892 | ||
938 | |a EBSCOhost |b EBSC |n 3283624 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1317772343 |
---|---|
_version_ | 1816882560741933056 |
adam_text | |
any_adam_object | |
author | Morettin, Paolo |
author_facet | Morettin, Paolo |
author_role | aut |
author_sort | Morettin, Paolo |
author_variant | p m pm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion |
ctrlnum | (OCoLC)1317772343 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03304cam a2200445 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1317772343</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">220517s2022 ne o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IOSPR</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">IOSPR</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781643682679</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1643682679</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781643682662</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1317772343</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9781643682679</subfield><subfield code="b">IOS Press</subfield><subfield code="n">http://www.iospress.nl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morettin, Paolo,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning and reasoning in hybrid structured spaces /</subfield><subfield code="c">Paolo Morettin.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands :</subfield><subfield code="b">IOS Press,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers in artificial intelligence and applications ;</subfield><subfield code="v">volume 350</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from] PDF title page (IOS Press, viewed May 17, 2022).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Frontiers in artificial intelligence and applications ;</subfield><subfield code="v">v. 350.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92019289</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3283624</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL29238892</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3283624</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1317772343 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:34Z |
institution | BVB |
isbn | 9781643682679 1643682679 |
language | English |
oclc_num | 1317772343 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | IOS Press, |
record_format | marc |
series | Frontiers in artificial intelligence and applications ; |
series2 | Frontiers in artificial intelligence and applications ; |
spelling | Morettin, Paolo, author. Learning and reasoning in hybrid structured spaces / Paolo Morettin. Amsterdam, Netherlands : IOS Press, 2022. 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Frontiers in artificial intelligence and applications ; volume 350 Online resource; title from] PDF title page (IOS Press, viewed May 17, 2022). Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. Machine learning fast Frontiers in artificial intelligence and applications ; v. 350. http://id.loc.gov/authorities/names/n92019289 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3283624 Volltext |
spellingShingle | Morettin, Paolo Learning and reasoning in hybrid structured spaces / Frontiers in artificial intelligence and applications ; Intro -- Title Page -- Abstract -- Acknowledgments -- Contents -- Introduction -- Motivation -- Contributions -- Outline of the Thesis -- Background -- Probabilistic Graphical Models -- Bayesian Networks -- Markov Networks -- Factor graphs -- The belief propagation algorithm -- Inference by Weighted Model Counting -- Propositional satisfiability -- Weighted Model Counting -- Logical structure -- Inference by Weighted Model Integration -- Satisfiability Modulo Theories -- Weighted Model Integration -- Related work -- Modelling and inference -- Learning -- WMI-PA -- Predicate Abstraction Weighted Model Integration, Revisited -- Basic case: WMI Without Atomic Propositions -- General Case: WMI With Atomic Propositions -- Conditional Weight Functions -- From WMI to WMIold and vice versa -- A Case Study -- Modelling a journey with a fixed path -- Modelling a journey under a conditional plan -- Efficiency of the encodings -- Efficient WMI Computation -- The Procedure WMI-AllSMT -- The Procedure WMI-PA -- WMI-PA vs. WMI-AllSMT -- Experiments -- Synthetic Setting -- Strategic Road Network with Fixed Path -- Strategic Road Network with Conditional Plans -- Discussion -- Final remarks MP-MI -- Preliminaries -- Computing MI -- Hybrid inference via MI -- On the inherent hardness of MI -- MP-MI: exact MI inference via message passing -- Propagation scheme -- Amortizing Queries -- Complexity of MP-MI -- Experiments -- Final remarks -- lariat -- Learning WMI distributions -- Learning the support -- Learning the weight function -- Normalization -- Experiments -- Final remarks -- Conclusion Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 |
title | Learning and reasoning in hybrid structured spaces / |
title_auth | Learning and reasoning in hybrid structured spaces / |
title_exact_search | Learning and reasoning in hybrid structured spaces / |
title_full | Learning and reasoning in hybrid structured spaces / Paolo Morettin. |
title_fullStr | Learning and reasoning in hybrid structured spaces / Paolo Morettin. |
title_full_unstemmed | Learning and reasoning in hybrid structured spaces / Paolo Morettin. |
title_short | Learning and reasoning in hybrid structured spaces / |
title_sort | learning and reasoning in hybrid structured spaces |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. Machine learning fast |
topic_facet | Machine learning. Apprentissage automatique. Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3283624 |
work_keys_str_mv | AT morettinpaolo learningandreasoninginhybridstructuredspaces |