Visualizing the invisible: imaging techniques for the structural biologist
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2012
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XVIII, 362 S. Ill., graph. Darst. |
ISBN: | 9780199767090 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV040114918 | ||
003 | DE-604 | ||
005 | 20120903 | ||
007 | t | ||
008 | 120503s2012 xxkad|| |||| 00||| eng d | ||
010 | |a 2011027000 | ||
020 | |a 9780199767090 |c hardcover : alk. paper |9 978-0-19-976709-0 | ||
035 | |a (OCoLC)796212683 | ||
035 | |a (DE-599)BVBBV040114918 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-29T |a DE-188 |a DE-355 | ||
050 | 0 | |a QH324 | |
082 | 0 | |a 571.6/33 | |
084 | |a WC 2000 |0 (DE-625)148067: |2 rvk | ||
100 | 1 | |a Moore, Peter B. |d 1939- |e Verfasser |0 (DE-588)1024304914 |4 aut | |
245 | 1 | 0 | |a Visualizing the invisible |b imaging techniques for the structural biologist |c Peter B. Moore |
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2012 | |
300 | |a XVIII, 362 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Ultrastructure (Biology) | |
650 | 4 | |a Molecular structure | |
650 | 4 | |a Fourier transformations | |
650 | 4 | |a Imaging systems in biology | |
650 | 4 | |a Cytology |x Experiments | |
650 | 4 | |a Molecular biology |x Experiments | |
650 | 4 | |a Biology |x Experiments | |
650 | 0 | 7 | |a Cytologie |0 (DE-588)4070177-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ultrastruktur |0 (DE-588)4061568-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biologie |0 (DE-588)4006851-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturaufklärung |0 (DE-588)4183788-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ultrastruktur |0 (DE-588)4061568-6 |D s |
689 | 0 | 1 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 0 | 2 | |a Cytologie |0 (DE-588)4070177-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Strukturaufklärung |0 (DE-588)4183788-5 |D s |
689 | 1 | 1 | |a Biologie |0 (DE-588)4006851-1 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024971151 |
Datensatz im Suchindex
_version_ | 1804149071446802432 |
---|---|
adam_text | CONTENTS
Preface
xiv
Notes
for the
Reader xvii
PART ONE Fundamentals
1.
On the Scattering of Electromagnetic Radiation by Atoms and Molecules
3
1.1
What is electromagnetic radiation?
4
1.2
Atoms are electrically polarized by electromagnetic radiation
7
1.3
Oscillating dipoles emit electromagnetic radiation
8
1.4
The electrons in atoms and molecules scatter X-rays as though they were
unbound
10
1.5
The scattering of X-rays by molecules depends on atomic positions
11
1.6
Radiation detectors measure energy, not field strength
14
1.7
If the radiation being scattered is unpolarized, the polarization correction
depends only on scattering angle
14
1.8
The coherence length of the radiation used in scattered experiments affects
the accuracy with which
Ij
can be measured
15
1.9
Measurement accuracy also depends on transverse coherence length
16
Problems
18
Appendix
1.1
Exponential notation, complex numbers, and Argand
diagrams
18
Appendix
1.2
The polarization correction for unpolarized radiation
19
2.
Molecular Scattering and Fourier Transforms
22
2.1
F(S) is a function of three angular variables
23
2.2
Fourier series are a useful way to represent structures
24
2.3
In the limit of
d
= 00,
the Fourier series becomes the Fourier
transformation
26
2.4
The Great Experiment
28
2.5
The shift theorem leads to a simple expression for the scattering of
molecules
29
2.6
The scaling theorem: Big things in real space are small things in reciprocal
space
31
vi
CONTENTS
2.7
The square wave and the Dirac delta function
32
2.8
Multiplication in real and reciprocal space: The convolution theorem
34
2.9
Instrument transfer functions and convolutions
37
2.10
The autocorrelation theorem
39
2.11
Rayleigh s theorem
40
Problems
42
3.
Scattering by Condensed Phases
44
3.1
The forward scatter from macroscopic samples is
90°
out of phase with
respect to the radiation that induces it
44
3.2
Scattering alters the phase of all the radiation that passes through a trans¬
parent sample
47
3.3
Phase changes are indistinguishable from velocity changes
48
3.4
Polarizabilities do not have to be real numbers
49
3.5
Atomic polarization effects are small
50
3.6
The frequency dependence of polarizabilities can be addressed classi¬
cally
50
3.7
When the imaginary part of
α
is large, energy is absorbed
53
3.8
The refractive index of substances for X-rays is less than
1.0 54
3.9
The wavelength dependences of the processes that control light and X-ray
polarizabilities are different
55
3.10
On the frequency dependence of atomic scattering factors for X-rays
56
3.11
Real X-ray absorption and dispersion spectra do not look the way classical
theory predicts
57
3.12
The imaginary component of
f
can be determined by measuring mass
absorption coefficients
59
3.13
Scattering can be described using scattering lengths and cross sections
60
3.14
Neutron scattering can be used to study molecular structure
61
3.15
Electrons are strongly scattered by atoms and molecules
64
3.16
Electrons are scattered inelastically by atoms
65
Problems
65
Appendix
3.1
Forward scatter from a thin slab
66
Appendix
3.2
A classical model for the motion of electrons in the
presence of electromagnetic radiation
67
Appendix
3.3
Energy absorption and the imaginary part of
α
68
PART TWO Crystallography
4.
On the Diffraction of X-rays by Crystals
73
4.1
The Fourier transform of a row of delta functions is a row of delta func¬
tions
74
4.2
Sampling in reciprocal space corresponds to replication in real space (and
viceversa)
75
4.3
Crystals can be described as convolutions of molecules with lattices
76
4.4
Lattices amplify Fourier transforms
77
4.5
The Nyquist theorem tells you how often to sample functions when com¬
puting Fourier transforms
78
Contents
vij
4.6
Lattices divide space into unit cells
80
4.7
The minimal element of structure in any unit cell is its asymmetric unit
83
4.8
The transform of a three-dimensional lattice is nonzero only at points in
reciprocal space that obey the
von Laue
equations
84
4.9
The Fourier transforms of crystals are usually written using unit cell vec¬
tors as the coordinate system
86
4.10
Bragg s law provides a second way to describe crystalline
diffraction
pat¬
terns
87
4.11 Von Laue
s
integers are Miller indices
89
4.12
Ewald s construction provides a simple tool for understanding crystal dif¬
fraction
91
Problems
92
Appendix
4.1
The
Bravais
lattices
93
Appendix
4.2
On the relationship between unit cells in real space and
unit cells in reciprocal space
95
5.
On the Appearance of Crystalline Diffraction Patterns
96
5.1
Diffraction data are collected from macromolecular crystals using the
oscillation method
96
5.2
Measured intensities must be corrected for systematic error
99
5.3
Radiation damage
küls
crystals
100
5.4
Diffraction patterns tend to be centrosymmetric
100
5.5
Anomalous diffraction can provide useful information about the chemical
identities of atoms in electron density maps
102
5.6
Anomalous diffraction effects can be used to determine the absolute hand
of chiral molecules
102
5.7
Crystal symmetry results in reciprocal space symmetry
103
5.8
Real crystals are not perfectly ordered
106
5.9
Disorder weakens Bragg reflections
106
5.10
Disorder makes crystals scatter in directions that are not allowed by
von
Laues
equations
109
5.11
Thermal
dimise
scatter need not be
isotropie
110
5.12
Average B-factors can be determined directly from diffraction data
113
5.13
Most crystals are mosaic
114
5.14
A single crystal structure can reveal the alternative conformations of a
macromolecule that is polymorphic
115
Problems
116
Appendix
5.1
Debye-Waller factors and diffuse scattering
117
Appendix
5.2
Correlated motions and diffuse scatter in one dimen¬
sion
120
Appendix
5.3
Random walks in two dimensions
121
6.
Solving the Phase Problem
123
6.1
The phases of reflections are measured by comparing them to a stan¬
dard
123
6.2
Macromolecular diffraction patterns can be phased by adding heavy atoms
to crystals
125
viii CONTENTS
6.3
The number of high-Z atoms per unit cell needed for phasing is
small
125
6.4
The heavy atom isomorphous replacement strategy for phasing
requires the comparison of intensities measured from different
crystals
126
6.5
Anomalous data can also provide phase information
128
6.6
Patterson functions display the interatomic distances and directions of a
crystal
130
6.7
Macromolecular crystal structures cannot be solved using Patterson func¬
tions alone
132
6.8
Heavy atom sites in derivatized crystals can be located using difference
Pattersons
132
6.9
Atomic coordinates can be deduced from the Harker sections of the Pat¬
terson functions
133
6.10
Multiple-wavelength anomalous diffraction combines anomalous and
heavy atom phase determination in a single experiment
135
6.11
Experimental error complicates the experimental determination of
phases
137
6.12
Experimental phase data specify phase probability distributions
139
6.13
The impact of phase errors on electron density maps can be con¬
trolled
141
6.14
The likelihood that the experiments done to phase a diffraction pattern
have produced reliable data can be assessed statistically
143
6.15
Diâraction
patterns can be phased by molecular replacement
144
6.16
Molecular replacement searches can be divided into a rotational part and
a translational part
145
Problems
146
Appendix
6.1
Heavy atom difference Pattersons and anomalous differ¬
ence Pattersons
147
7.
Electron Density Maps and Molecular Structures
150
7.1
Experimental electron density maps display the variation in electron den¬
sity within the unit cell with respect to the average
150
7.2
Electron density maps are contoured in units of
sigma
151
7.3
The point-to-point resolution of an electron density map is roughly
7.4
How high is high enough?
155
7.5
Macromolecular electron density maps having resolutions worse than
~3.5 A are difficult to interpret chemically
156
7.6
Solvent may be visible in macromolecular electron density maps
157
7.7
Initial models must be refined
158
7.8
R-factors are used to measure the consistency of molecular models with
measured diffraction data
159
7.9
Free-R is useful tool for validating refinements
161
7.10
Phases rule
162
7.11
Regions where models do not correspond to electron density maps can be
identified using difference electron density maps
163
Contents
ц
7.12
Experimental
electron
density maps can be improved by phase modifica¬
tion and extension
164
7.13
Solvent flattening and the Nyquist theorem
166
7.14
Let the buyer beware
167
Problems
170
Appendix
7.1
The inverse Fourier transform of the spherical aperture
function
170
Appendix
7.2
Estimating the R-factor of crystal structures that are perfect
nonsense
172
Appendix
7.3
The difference Fourier
173
PART THREE Noncrystallographic Diffraction
8.
Diffraction from Noncrystalline Samples
179
8.1
X-ray microscopy can be done without lenses
179
8.2
The Fourier transform of a projection is a central section
180
8.3
Continuous transforms can be inverted by solvent flattening
182
8.4
Can the structures of macromolecules be solved at atomic resolution by
X-ray imaging?
183
8.5
Solution-scattering patterns provide rotationally averaged scattering
data
185
8.6
Solution-scattering experiments determine length distributions and vice
versa
186
8.7
Molecular weights and radii of gyration are easily extracted from solu¬
tion-scattering profiles
188
8.8
Solution-scattering profiles are strongly affected by the scattering length
densities/electron densities of solvents
191
8.9
Shape scatter dominates most solution-scattering curves
192
8.10
Measured radii of gyration are contrast-dependent
194
8.11
Contrast variation experiments are more easily done using neutron radia¬
tion than X-rays
195
8.12
It is surprisingly difficult to compute solution-scattering curves
196
8.13
Useful models for the shapes of macromolecules can be derived from
solution-scattering curves
198
8.14
The experimental apparatus for small angle scattering resembles that used
for coherent diffractive imaging
199
8.15
Molecular weights and radii of gyration can be measured by light scatter¬
ing
201
Problems
203
Further Reading
204
Appendix
8.1
Derivation of the Debye equation
204
Appendixes Small angle scatter and the radius of gyration
205
PART FOUR Optical Microscopy
9.
Image Formation Using Lenses
209
9.1
Magnifiedimagesofsmallobjectscanbeproducedtwodifferentways
209
x
CONTENTS
9.2
The direction propagation of light can change at index of refraction
boundaries
211
9.3
In geometrical optics, waves are replaced by rays
212
9.4
Curved glass surfaces can focus light
213
9.5
The lens law
213
9.6
The lens law is valid for paraxial skew rays
216
9.7
Focusing lenses produce images
217
9.8
Lens performance is limited by aberration
219
9.9
Spherical aberration is the most important of the
Seidel
aberrations
220
9.10
There are four other
Seidel
aberrations
222
9.11
Parallel bundles of rays focus in the back focal plane of ideal lenses
223
9.12
The light wave in the back focal plane is the Fourier transform of the light
wave at the object plane
224
9.13
As light travels from the back focal plane to the image plane it gets Fourier
transformed again
226
9.14
The images of points have the functional form Ji (x) /x
227
9.15
Rayleigh
s
criterion is used to estimate the resolution of microscopes
229
9.16
Microscopes display depth of field and depth of focus
231
Problems
233
Further Reading
234
Appendix9.1 Derivation of the Lens Law
234
Appendix
9.2
Optical path length and spherical aberration
238
Appendix
9.3
The Fourier transform of a circular aperture
241
10.
The Light Microscope
244
10.1
Incoherent light is the illumination of choice for ordinary
microscopy
244
10.2
Incoherent image formation is easily described in Fourier terms
245
10.3
The Fourier transform of the square of any function is the autocorrela¬
tion function of its Fourier transform
248
10.4
Light absorption accounts for much of the contrast in ordinary micro¬
scope images
249
10.5
Fluorescence plays an increasingly important role in biological
microscopy
250
10.6
light scattering contributes to image contrast
252
10.7
Dark field illumination can be used to image objects that scatter light
253
10.8
Phase objects can be visualized using phase contrast microscopy
254
10.9
Confocal microscopy
256
10.10
The point spread function of a confocal microscope is the product of two
objective lens point spread functions
257
10.11
Three-dimensional images can be recovered from two-dimensional
microscopic images
260
10.12
Light microscopes can resolve points that are closer together than the
Rayleigh limit
262
Problems
267
Further Reading
268
Contents
Appendix 10.1 The
distribution
of light energy on-axis, and near-
focus
268
PART FIVE Electron Microscopy
11.
Lenses that focus Electrons
273
11.1
Biological electron microscopy is done using two different kinds of
EMs
274
11.2
The magnetic field of a one-turn coil can focus electrons
276
11.3
The lenses in EMs are solenoids
279
11.4
Magnetic lenses have focal lengths
280
11.5
The optical properties of EMs can be worked out using quantum
mechanics
281
11.6
Aberration seriously degrades the performance of magnetic lenses
282
11.7
Spherical aberration limits the resolution of magnetic lenses
283
11.8
The resolution of the images produced by lenses that have large spherical
aberration coefficients can be improved by reducing their limiting aper¬
tures
284
11.9
Electron microscopes have large depths of field and focus
285
11.10
Focal length variation and spherical aberration are important determi¬
nants of the contrast transfer functions of EMs
286
11.11
Chromatic aberration is a focal length effect
287
11.12
Chromatic aberration suppresses the high-resolution features of
images
288
11.13
Chromatic aberration has many sources in EMs
288
11.14
The Scherzer resolution of an image and its information limit are not the
same
290
11.15
Both the chromatic and spherical aberration of magnetic lenses can be
corrected instrumentally
291
Problems
292
Further Reading
292
Appendix
11.1
On the Chromatic Aberration of Magnetic Lenses
292
12.
Image Formation in the Electron Microscope
294
12.1
Aperture and phase effects account for most of the contrast in EM
images
294
12.2
Aperture contrast is best understood using cross sections
295
12.3
There is little structural information in high angle electron scatter
296
12.4
Aperture contrast images have bright backgrounds and low resolu¬
tions
298
12.5
EM stains enhance aperture contrast
299
12.6
Inelastic scattering damages specimens
301
12.7
The phases of electron waves change as they pass through objects
301
12.8
TEMs are naturally phase contrast microscopes
303
12.9
Underfocused images are better than in-focus images
304
12.10
CTFs have a big impact on high-resolution EM images
306
пі
CONTENTS
12.11
The CTFs relevant to an EM image can be determined after the
fact
307
12.12
CTFs can be examined using optical diffractometers
309
12.13
CTF effects can be reversed
309
12.14
The transverse coherence of the electron beam affects image
quality
312
12.15
Partial coherence suppresses image detail
313
12.16
Source brilliance set a practical upper limit on transverse coherence
314
12.17
The sources used in electron guns differ significantly in brilliance
315
12.18
Users can control the transverse coherence lengths of EM beams
315
Problems
316
Further Reading
317
Appendix
12.1
The effects of thermal motions on molecular scattering
profiles
317
Appendix
12.2
The images of weak-phase objects
319
13.
Electron Microscopy in Three Dimensions
320
13.1
Three-dimensional reconstructions can be done in reciprocal
space
321
13.2
Interpretable
images cannot be obtained by direct inversion of central
section data sets
322
13.3
If the transform of an object is known on a lattice of appropriate
dimensions, its transform can be evaluated anywhere in reciprocal
space
324
13.4
В
is a product of sine functions
326
13.5
F
can be estimated by matrix inversion
327
13.6
Error propagation determines resolution
328
13.7
Tilt data sets are best described using cylindrical polar coordinates
329
13.8
Tilt data can be reduced one plane at a time
330
13.9
Only a finite number of Gn values that must be taken into account in a
tomographic reconstruction
332
13.10
Symmetry reduces the number of images required to reconstruct the
structure of an object to any given resolution
334
13.11
Symmetry determines the orders of the Bessel functions that contribute
to each layer plane in a helical diffraction pattern
334
13.12
At modest resolutions, a single Bessel order may account for the intensity
observed on each plane in a helical diffraction pattern
338
13.13
The images used for single particle reconstructions often have very low
signal-to-noise ratios
339
13.14
Image orientations can be determined by the random-conical tilt
method
340
13.15
Common lines can be used to determine image orientations
342
13.16
Orientation refinement is an important part of most single particle
reconstructions
343
13.17
It is easy to validate reconstructions and to estimate their resolutions
344
Problems
347
Contents
Further Reading
349
Appendix
13.1
Solving of least squares problems
349
Appendix
13.2
Error propagation in linear systems
350
Appendix
13.3
The Fourier transform in cylindrical coordinates
352
Index
355
P nowledge
of the microscopic structure of biological systems is the key to un¬
derstanding their physiological properties. Most of what we now know about
this subject has been generated by techniques that produce images of the materi¬
als of interest, one way or another, and there is every reason to believe that the im¬
pact of these techniques on the biological sciences will be every bit as important in
the future as they are today. Thus, the 21st century biologist needs to understand
how microscopic imaging techniques work, as it is likely that sooner or later he or
she will have to use one or another
ι
on the information that they provide.
or will otherwise become dependent
This textbook introduces the many techniques now available for imaging
biological materials, such as crystallography, optical microscopy, and electron mi¬
croscopy, at a level that will enable them to use them effectively to do research.
Since all of these experimental methods are best understood in terms of Fourier
transformations, this book first explains the relevant concepts from this branch of
mathematics, and subsequently illustrates their elegance and power by applying
them to each of the techniques presented.
Derived from a one-term course taught by the author for many years, the
book is intended for students interested either in doing structural research them¬
selves, or in exploiting structural information produced by others. Scientists in¬
terested in entering the structural biology field later in their careers will also find it
Peter B. Moore is a biophysical chemist who received his Ph.D. at Harvard with
James D. Watson, and spent most of his subsequent career at Yale. He is best
known for his work on the three-dimensional structure of the ribosome, which he
pursued using a wide variety of biophysical methods.
Cover design: Eve
Siegel
Cover image: Peter B. Moore
OXPORD
UNIVERSITY PRESS
|
any_adam_object | 1 |
author | Moore, Peter B. 1939- |
author_GND | (DE-588)1024304914 |
author_facet | Moore, Peter B. 1939- |
author_role | aut |
author_sort | Moore, Peter B. 1939- |
author_variant | p b m pb pbm |
building | Verbundindex |
bvnumber | BV040114918 |
callnumber-first | Q - Science |
callnumber-label | QH324 |
callnumber-raw | QH324 |
callnumber-search | QH324 |
callnumber-sort | QH 3324 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WC 2000 |
ctrlnum | (OCoLC)796212683 (DE-599)BVBBV040114918 |
dewey-full | 571.6/33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.6/33 |
dewey-search | 571.6/33 |
dewey-sort | 3571.6 233 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02471nam a2200577zc 4500</leader><controlfield tag="001">BV040114918</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120903 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120503s2012 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011027000</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199767090</subfield><subfield code="c">hardcover : alk. paper</subfield><subfield code="9">978-0-19-976709-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)796212683</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040114918</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH324</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.6/33</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 2000</subfield><subfield code="0">(DE-625)148067:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moore, Peter B.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1024304914</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Visualizing the invisible</subfield><subfield code="b">imaging techniques for the structural biologist</subfield><subfield code="c">Peter B. Moore</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 362 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrastructure (Biology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging systems in biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytology</subfield><subfield code="x">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular biology</subfield><subfield code="x">Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biology</subfield><subfield code="x">Experiments</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cytologie</subfield><subfield code="0">(DE-588)4070177-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ultrastruktur</subfield><subfield code="0">(DE-588)4061568-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturaufklärung</subfield><subfield code="0">(DE-588)4183788-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ultrastruktur</subfield><subfield code="0">(DE-588)4061568-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Cytologie</subfield><subfield code="0">(DE-588)4070177-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Strukturaufklärung</subfield><subfield code="0">(DE-588)4183788-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024971151</subfield></datafield></record></collection> |
id | DE-604.BV040114918 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:17:12Z |
institution | BVB |
isbn | 9780199767090 |
language | English |
lccn | 2011027000 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024971151 |
oclc_num | 796212683 |
open_access_boolean | |
owner | DE-703 DE-29T DE-188 DE-355 DE-BY-UBR |
owner_facet | DE-703 DE-29T DE-188 DE-355 DE-BY-UBR |
physical | XVIII, 362 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Moore, Peter B. 1939- Verfasser (DE-588)1024304914 aut Visualizing the invisible imaging techniques for the structural biologist Peter B. Moore Oxford [u.a.] Oxford Univ. Press 2012 XVIII, 362 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Ultrastructure (Biology) Molecular structure Fourier transformations Imaging systems in biology Cytology Experiments Molecular biology Experiments Biology Experiments Cytologie (DE-588)4070177-3 gnd rswk-swf Ultrastruktur (DE-588)4061568-6 gnd rswk-swf Biologie (DE-588)4006851-1 gnd rswk-swf Strukturaufklärung (DE-588)4183788-5 gnd rswk-swf Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf Ultrastruktur (DE-588)4061568-6 s Bildgebendes Verfahren (DE-588)4006617-4 s Cytologie (DE-588)4070177-3 s DE-604 Strukturaufklärung (DE-588)4183788-5 s Biologie (DE-588)4006851-1 s Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Moore, Peter B. 1939- Visualizing the invisible imaging techniques for the structural biologist Ultrastructure (Biology) Molecular structure Fourier transformations Imaging systems in biology Cytology Experiments Molecular biology Experiments Biology Experiments Cytologie (DE-588)4070177-3 gnd Ultrastruktur (DE-588)4061568-6 gnd Biologie (DE-588)4006851-1 gnd Strukturaufklärung (DE-588)4183788-5 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
subject_GND | (DE-588)4070177-3 (DE-588)4061568-6 (DE-588)4006851-1 (DE-588)4183788-5 (DE-588)4006617-4 |
title | Visualizing the invisible imaging techniques for the structural biologist |
title_auth | Visualizing the invisible imaging techniques for the structural biologist |
title_exact_search | Visualizing the invisible imaging techniques for the structural biologist |
title_full | Visualizing the invisible imaging techniques for the structural biologist Peter B. Moore |
title_fullStr | Visualizing the invisible imaging techniques for the structural biologist Peter B. Moore |
title_full_unstemmed | Visualizing the invisible imaging techniques for the structural biologist Peter B. Moore |
title_short | Visualizing the invisible |
title_sort | visualizing the invisible imaging techniques for the structural biologist |
title_sub | imaging techniques for the structural biologist |
topic | Ultrastructure (Biology) Molecular structure Fourier transformations Imaging systems in biology Cytology Experiments Molecular biology Experiments Biology Experiments Cytologie (DE-588)4070177-3 gnd Ultrastruktur (DE-588)4061568-6 gnd Biologie (DE-588)4006851-1 gnd Strukturaufklärung (DE-588)4183788-5 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd |
topic_facet | Ultrastructure (Biology) Molecular structure Fourier transformations Imaging systems in biology Cytology Experiments Molecular biology Experiments Biology Experiments Cytologie Ultrastruktur Biologie Strukturaufklärung Bildgebendes Verfahren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024971151&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT moorepeterb visualizingtheinvisibleimagingtechniquesforthestructuralbiologist |