Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions
Since the first edition of this book the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In this revi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1996
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | Since the first edition of this book the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In this revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods |
Beschreibung: | xiv, 166 p. ill |
ISBN: | 9789814390231 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044638852 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789814390231 |9 978-981-4390-23-1 | ||
024 | 7 | |a 10.1142/2933 |2 doi | |
035 | |a (ZDB-124-WOP)00006165 | ||
035 | |a (OCoLC)1005658700 | ||
035 | |a (DE-599)BVBBV044638852 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 515.354 |2 22 | |
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Miller, J. J. H. |d 1937- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fitted numerical methods for singular perturbation problems |b error estimates in the maximum norm for linear problems in one and two dimensions |c J.J.H. Miller, E. O'Riordan, G.I. Shishkin |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1996 | |
300 | |a xiv, 166 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Since the first edition of this book the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In this revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods | ||
650 | 4 | |a Differential equations / Numerical solutions | |
650 | 4 | |a Perturbation (Mathematics) | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singuläre Störung |0 (DE-588)4055100-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 0 | 1 | |a Singuläre Störung |0 (DE-588)4055100-3 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 1 | 1 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a O'Riordan, E. |e Sonstige |4 oth | |
700 | 1 | |a Shishkin, G. I. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810224622 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810224621 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2933#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036823 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2933#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178056169914368 |
---|---|
any_adam_object | |
author | Miller, J. J. H. 1937- |
author_facet | Miller, J. J. H. 1937- |
author_role | aut |
author_sort | Miller, J. J. H. 1937- |
author_variant | j j h m jjh jjhm |
building | Verbundindex |
bvnumber | BV044638852 |
classification_rvk | SK 920 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00006165 (OCoLC)1005658700 (DE-599)BVBBV044638852 |
dewey-full | 515.354 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.354 |
dewey-search | 515.354 |
dewey-sort | 3515.354 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03424nmm a2200589zc 4500</leader><controlfield tag="001">BV044638852</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814390231</subfield><subfield code="9">978-981-4390-23-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00006165</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005658700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638852</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.354</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, J. J. H.</subfield><subfield code="d">1937-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fitted numerical methods for singular perturbation problems</subfield><subfield code="b">error estimates in the maximum norm for linear problems in one and two dimensions</subfield><subfield code="c">J.J.H. Miller, E. O'Riordan, G.I. Shishkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 166 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the first edition of this book the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In this revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perturbation (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Riordan, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shishkin, G. I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810224622</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810224621</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2933#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036823</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2933#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044638852 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:54Z |
institution | BVB |
isbn | 9789814390231 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036823 |
oclc_num | 1005658700 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xiv, 166 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Miller, J. J. H. 1937- Verfasser aut Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions J.J.H. Miller, E. O'Riordan, G.I. Shishkin Singapore World Scientific Pub. Co. c1996 xiv, 166 p. ill txt rdacontent c rdamedia cr rdacarrier Since the first edition of this book the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In this revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods Differential equations / Numerical solutions Perturbation (Mathematics) Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Störungstheorie (DE-588)4128420-3 gnd rswk-swf Singuläre Störung (DE-588)4055100-3 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 s Singuläre Störung (DE-588)4055100-3 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Störungstheorie (DE-588)4128420-3 s 2\p DE-604 O'Riordan, E. Sonstige oth Shishkin, G. I. Sonstige oth Erscheint auch als Druck-Ausgabe 9789810224622 Erscheint auch als Druck-Ausgabe 9810224621 http://www.worldscientific.com/worldscibooks/10.1142/2933#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Miller, J. J. H. 1937- Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions Differential equations / Numerical solutions Perturbation (Mathematics) Numerisches Verfahren (DE-588)4128130-5 gnd Störungstheorie (DE-588)4128420-3 gnd Singuläre Störung (DE-588)4055100-3 gnd Differentialgleichung (DE-588)4012249-9 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4128420-3 (DE-588)4055100-3 (DE-588)4012249-9 |
title | Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions |
title_auth | Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions |
title_exact_search | Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions |
title_full | Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions J.J.H. Miller, E. O'Riordan, G.I. Shishkin |
title_fullStr | Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions J.J.H. Miller, E. O'Riordan, G.I. Shishkin |
title_full_unstemmed | Fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions J.J.H. Miller, E. O'Riordan, G.I. Shishkin |
title_short | Fitted numerical methods for singular perturbation problems |
title_sort | fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions |
title_sub | error estimates in the maximum norm for linear problems in one and two dimensions |
topic | Differential equations / Numerical solutions Perturbation (Mathematics) Numerisches Verfahren (DE-588)4128130-5 gnd Störungstheorie (DE-588)4128420-3 gnd Singuläre Störung (DE-588)4055100-3 gnd Differentialgleichung (DE-588)4012249-9 gnd |
topic_facet | Differential equations / Numerical solutions Perturbation (Mathematics) Numerisches Verfahren Störungstheorie Singuläre Störung Differentialgleichung |
url | http://www.worldscientific.com/worldscibooks/10.1142/2933#t=toc |
work_keys_str_mv | AT millerjjh fittednumericalmethodsforsingularperturbationproblemserrorestimatesinthemaximumnormforlinearproblemsinoneandtwodimensions AT oriordane fittednumericalmethodsforsingularperturbationproblemserrorestimatesinthemaximumnormforlinearproblemsinoneandtwodimensions AT shishkingi fittednumericalmethodsforsingularperturbationproblemserrorestimatesinthemaximumnormforlinearproblemsinoneandtwodimensions |