Fitted numerical methods for singular perturbation problems :: error estimates in the maximum norm for linear problems in one and two dimensions /
Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revi...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific,
©2012.
|
Ausgabe: | Rev. ed. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods. |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814390743 9814390747 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn794262974 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 960509s2012 si a ob 001 0 eng d | ||
040 | |a LGG |b eng |e pn |c LGG |d E7B |d OCLCO |d N$T |d YDXCP |d I9W |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCA |d N$T |d OCLCF |d N$T |d OCLCQ |d LOA |d N$T |d MOR |d PIFAG |d OCLCQ |d U3W |d COCUF |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d INT |d OCLCQ |d M8D |d LEAUB |d AU@ |d CEF |d UKCRE |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 960207243 |a 961622159 |a 962602223 |a 966494143 |a 988485148 |a 991964933 |a 1037783791 |a 1038615897 |a 1045522038 |a 1053541832 |a 1086417851 |a 1100909254 |a 1153529133 |a 1259249172 | ||
020 | |a 9789814390743 |q (electronic bk.) | ||
020 | |a 9814390747 |q (electronic bk.) | ||
020 | |z 9810224621 |q (alk. paper) | ||
020 | |z 9789810224622 |q (alk. paper) | ||
020 | |z 9814390739 | ||
020 | |z 9789814390736 | ||
035 | |a (OCoLC)794262974 |z (OCoLC)960207243 |z (OCoLC)961622159 |z (OCoLC)962602223 |z (OCoLC)966494143 |z (OCoLC)988485148 |z (OCoLC)991964933 |z (OCoLC)1037783791 |z (OCoLC)1038615897 |z (OCoLC)1045522038 |z (OCoLC)1053541832 |z (OCoLC)1086417851 |z (OCoLC)1100909254 |z (OCoLC)1153529133 |z (OCoLC)1259249172 | ||
050 | 4 | |a QA377 |b .M54 2012eb | |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.354 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Miller, J. J. H. |q (John James Henry), |d 1937- |1 https://id.oclc.org/worldcat/entity/E39PBJwHhqh7Xc8VqcqmQwGCQq |0 http://id.loc.gov/authorities/names/n82010672 | |
245 | 1 | 0 | |a Fitted numerical methods for singular perturbation problems : |b error estimates in the maximum norm for linear problems in one and two dimensions / |c J.J.H. Miller, E. O'Riordan, G.I. Shishkin. |
250 | |a Rev. ed. | ||
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific, |c ©2012. | ||
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Motivation for the study of singular perturbation problems -- 2. Simple examples of singular perturbation problems -- 3. Numerical methods for singular perturbation problems -- 4. Simple fitted operator methods in one dimension -- 5. Simple fitted mesh methods in one dimension -- 6. Convergence of fitted mesh finite difference methods for linear reaction-diffusion problems in one dimension -- 7. Properties of upwind finite difference operators on piecewise uniform fitted meshes -- 8. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in one dimension -- 9. Fitted mesh finite element methods for linear convection-diffusion problems in one dimension -- 10. Convergence of Schwarz iterative methods for fitted mesh methods in one dimension -- 11. Linear convection-diffusion problems in two dimensions and their numerical solution -- 12. Bounds on the derivatives of solutions of linear convection-diffusion problems in two dimensions with regular boundary layers -- 13. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in two dimensions with regular boundary layers -- 14. Limitations of fitted operator methods on uniform rectangular meshes for problems with parabolic boundary layers -- 15. Fitted numerical methods for problems with initial and parabolic boundary layers. | |
520 | |a Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Differential equations |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85037893 | |
650 | 0 | |a Perturbation (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85100181 | |
650 | 6 | |a Équations différentielles |x Solutions numériques. | |
650 | 6 | |a Perturbation (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Differential equations |x Numerical solutions |2 fast | |
650 | 7 | |a Perturbation (Mathematics) |2 fast | |
700 | 1 | |a O'Riordan, E. |q (Eugene) |1 https://id.oclc.org/worldcat/entity/E39PBJqVPWrFHtXX9jJhC6x7HC |0 http://id.loc.gov/authorities/names/n96047876 | |
700 | 1 | |a Shishkin, G. I. |1 https://id.oclc.org/worldcat/entity/E39PCjy7Xy4qVJcwyDPjDCWcvb |0 http://id.loc.gov/authorities/names/n84052845 | |
758 | |i has work: |a Fitted numerical methods for singular perturbation problems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGTJqHCmH6p7m6MXHq9rHK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Miller, J.J.H. (John James Henry), 1937- |t Fitted numerical methods for singular perturbation problems. |b Rev. ed. |d Singapore ; River Edge, NJ : World Scientific, 2012 |z 9789814390736 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=811823 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10563505 | ||
938 | |a EBSCOhost |b EBSC |n 811823 | ||
938 | |a YBP Library Services |b YANK |n 7583591 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn794262974 |
---|---|
_version_ | 1816881795355901953 |
adam_text | |
any_adam_object | |
author | Miller, J. J. H. (John James Henry), 1937- |
author2 | O'Riordan, E. (Eugene) Shishkin, G. I. |
author2_role | |
author2_variant | e o eo g i s gi gis |
author_GND | http://id.loc.gov/authorities/names/n82010672 http://id.loc.gov/authorities/names/n96047876 http://id.loc.gov/authorities/names/n84052845 |
author_facet | Miller, J. J. H. (John James Henry), 1937- O'Riordan, E. (Eugene) Shishkin, G. I. |
author_role | |
author_sort | Miller, J. J. H. 1937- |
author_variant | j j h m jjh jjhm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .M54 2012eb |
callnumber-search | QA377 .M54 2012eb |
callnumber-sort | QA 3377 M54 42012EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Motivation for the study of singular perturbation problems -- 2. Simple examples of singular perturbation problems -- 3. Numerical methods for singular perturbation problems -- 4. Simple fitted operator methods in one dimension -- 5. Simple fitted mesh methods in one dimension -- 6. Convergence of fitted mesh finite difference methods for linear reaction-diffusion problems in one dimension -- 7. Properties of upwind finite difference operators on piecewise uniform fitted meshes -- 8. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in one dimension -- 9. Fitted mesh finite element methods for linear convection-diffusion problems in one dimension -- 10. Convergence of Schwarz iterative methods for fitted mesh methods in one dimension -- 11. Linear convection-diffusion problems in two dimensions and their numerical solution -- 12. Bounds on the derivatives of solutions of linear convection-diffusion problems in two dimensions with regular boundary layers -- 13. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in two dimensions with regular boundary layers -- 14. Limitations of fitted operator methods on uniform rectangular meshes for problems with parabolic boundary layers -- 15. Fitted numerical methods for problems with initial and parabolic boundary layers. |
ctrlnum | (OCoLC)794262974 |
dewey-full | 515.354 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.354 |
dewey-search | 515.354 |
dewey-sort | 3515.354 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Rev. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06126cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn794262974</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">960509s2012 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">N$T</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AU@</subfield><subfield code="d">CEF</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">960207243</subfield><subfield code="a">961622159</subfield><subfield code="a">962602223</subfield><subfield code="a">966494143</subfield><subfield code="a">988485148</subfield><subfield code="a">991964933</subfield><subfield code="a">1037783791</subfield><subfield code="a">1038615897</subfield><subfield code="a">1045522038</subfield><subfield code="a">1053541832</subfield><subfield code="a">1086417851</subfield><subfield code="a">1100909254</subfield><subfield code="a">1153529133</subfield><subfield code="a">1259249172</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814390743</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814390747</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810224621</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810224622</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814390739</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814390736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794262974</subfield><subfield code="z">(OCoLC)960207243</subfield><subfield code="z">(OCoLC)961622159</subfield><subfield code="z">(OCoLC)962602223</subfield><subfield code="z">(OCoLC)966494143</subfield><subfield code="z">(OCoLC)988485148</subfield><subfield code="z">(OCoLC)991964933</subfield><subfield code="z">(OCoLC)1037783791</subfield><subfield code="z">(OCoLC)1038615897</subfield><subfield code="z">(OCoLC)1045522038</subfield><subfield code="z">(OCoLC)1053541832</subfield><subfield code="z">(OCoLC)1086417851</subfield><subfield code="z">(OCoLC)1100909254</subfield><subfield code="z">(OCoLC)1153529133</subfield><subfield code="z">(OCoLC)1259249172</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.M54 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.354</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, J. J. H.</subfield><subfield code="q">(John James Henry),</subfield><subfield code="d">1937-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJwHhqh7Xc8VqcqmQwGCQq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82010672</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fitted numerical methods for singular perturbation problems :</subfield><subfield code="b">error estimates in the maximum norm for linear problems in one and two dimensions /</subfield><subfield code="c">J.J.H. Miller, E. O'Riordan, G.I. Shishkin.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Motivation for the study of singular perturbation problems -- 2. Simple examples of singular perturbation problems -- 3. Numerical methods for singular perturbation problems -- 4. Simple fitted operator methods in one dimension -- 5. Simple fitted mesh methods in one dimension -- 6. Convergence of fitted mesh finite difference methods for linear reaction-diffusion problems in one dimension -- 7. Properties of upwind finite difference operators on piecewise uniform fitted meshes -- 8. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in one dimension -- 9. Fitted mesh finite element methods for linear convection-diffusion problems in one dimension -- 10. Convergence of Schwarz iterative methods for fitted mesh methods in one dimension -- 11. Linear convection-diffusion problems in two dimensions and their numerical solution -- 12. Bounds on the derivatives of solutions of linear convection-diffusion problems in two dimensions with regular boundary layers -- 13. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in two dimensions with regular boundary layers -- 14. Limitations of fitted operator methods on uniform rectangular meshes for problems with parabolic boundary layers -- 15. Fitted numerical methods for problems with initial and parabolic boundary layers.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037893</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Perturbation (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85100181</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Perturbation (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Perturbation (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Riordan, E.</subfield><subfield code="q">(Eugene)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJqVPWrFHtXX9jJhC6x7HC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96047876</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shishkin, G. I.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjy7Xy4qVJcwyDPjDCWcvb</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84052845</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Fitted numerical methods for singular perturbation problems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGTJqHCmH6p7m6MXHq9rHK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Miller, J.J.H. (John James Henry), 1937-</subfield><subfield code="t">Fitted numerical methods for singular perturbation problems.</subfield><subfield code="b">Rev. ed.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, 2012</subfield><subfield code="z">9789814390736</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=811823</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10563505</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">811823</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7583591</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn794262974 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:18:24Z |
institution | BVB |
isbn | 9789814390743 9814390747 |
language | English |
oclc_num | 794262974 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific, |
record_format | marc |
spelling | Miller, J. J. H. (John James Henry), 1937- https://id.oclc.org/worldcat/entity/E39PBJwHhqh7Xc8VqcqmQwGCQq http://id.loc.gov/authorities/names/n82010672 Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / J.J.H. Miller, E. O'Riordan, G.I. Shishkin. Rev. ed. Singapore ; Hackensack, N.J. : World Scientific, ©2012. 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Includes bibliographical references and index. 1. Motivation for the study of singular perturbation problems -- 2. Simple examples of singular perturbation problems -- 3. Numerical methods for singular perturbation problems -- 4. Simple fitted operator methods in one dimension -- 5. Simple fitted mesh methods in one dimension -- 6. Convergence of fitted mesh finite difference methods for linear reaction-diffusion problems in one dimension -- 7. Properties of upwind finite difference operators on piecewise uniform fitted meshes -- 8. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in one dimension -- 9. Fitted mesh finite element methods for linear convection-diffusion problems in one dimension -- 10. Convergence of Schwarz iterative methods for fitted mesh methods in one dimension -- 11. Linear convection-diffusion problems in two dimensions and their numerical solution -- 12. Bounds on the derivatives of solutions of linear convection-diffusion problems in two dimensions with regular boundary layers -- 13. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in two dimensions with regular boundary layers -- 14. Limitations of fitted operator methods on uniform rectangular meshes for problems with parabolic boundary layers -- 15. Fitted numerical methods for problems with initial and parabolic boundary layers. Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods. Print version record. English. Differential equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037893 Perturbation (Mathematics) http://id.loc.gov/authorities/subjects/sh85100181 Équations différentielles Solutions numériques. Perturbation (Mathématiques) MATHEMATICS Differential Equations General. bisacsh MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential equations Numerical solutions fast Perturbation (Mathematics) fast O'Riordan, E. (Eugene) https://id.oclc.org/worldcat/entity/E39PBJqVPWrFHtXX9jJhC6x7HC http://id.loc.gov/authorities/names/n96047876 Shishkin, G. I. https://id.oclc.org/worldcat/entity/E39PCjy7Xy4qVJcwyDPjDCWcvb http://id.loc.gov/authorities/names/n84052845 has work: Fitted numerical methods for singular perturbation problems (Text) https://id.oclc.org/worldcat/entity/E39PCGTJqHCmH6p7m6MXHq9rHK https://id.oclc.org/worldcat/ontology/hasWork Print version: Miller, J.J.H. (John James Henry), 1937- Fitted numerical methods for singular perturbation problems. Rev. ed. Singapore ; River Edge, NJ : World Scientific, 2012 9789814390736 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=811823 Volltext |
spellingShingle | Miller, J. J. H. (John James Henry), 1937- Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / 1. Motivation for the study of singular perturbation problems -- 2. Simple examples of singular perturbation problems -- 3. Numerical methods for singular perturbation problems -- 4. Simple fitted operator methods in one dimension -- 5. Simple fitted mesh methods in one dimension -- 6. Convergence of fitted mesh finite difference methods for linear reaction-diffusion problems in one dimension -- 7. Properties of upwind finite difference operators on piecewise uniform fitted meshes -- 8. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in one dimension -- 9. Fitted mesh finite element methods for linear convection-diffusion problems in one dimension -- 10. Convergence of Schwarz iterative methods for fitted mesh methods in one dimension -- 11. Linear convection-diffusion problems in two dimensions and their numerical solution -- 12. Bounds on the derivatives of solutions of linear convection-diffusion problems in two dimensions with regular boundary layers -- 13. Convergence of fitted mesh finite difference methods for linear convection-diffusion problems in two dimensions with regular boundary layers -- 14. Limitations of fitted operator methods on uniform rectangular meshes for problems with parabolic boundary layers -- 15. Fitted numerical methods for problems with initial and parabolic boundary layers. Differential equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037893 Perturbation (Mathematics) http://id.loc.gov/authorities/subjects/sh85100181 Équations différentielles Solutions numériques. Perturbation (Mathématiques) MATHEMATICS Differential Equations General. bisacsh MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential equations Numerical solutions fast Perturbation (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037893 http://id.loc.gov/authorities/subjects/sh85100181 |
title | Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / |
title_auth | Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / |
title_exact_search | Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / |
title_full | Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / J.J.H. Miller, E. O'Riordan, G.I. Shishkin. |
title_fullStr | Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / J.J.H. Miller, E. O'Riordan, G.I. Shishkin. |
title_full_unstemmed | Fitted numerical methods for singular perturbation problems : error estimates in the maximum norm for linear problems in one and two dimensions / J.J.H. Miller, E. O'Riordan, G.I. Shishkin. |
title_short | Fitted numerical methods for singular perturbation problems : |
title_sort | fitted numerical methods for singular perturbation problems error estimates in the maximum norm for linear problems in one and two dimensions |
title_sub | error estimates in the maximum norm for linear problems in one and two dimensions / |
topic | Differential equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037893 Perturbation (Mathematics) http://id.loc.gov/authorities/subjects/sh85100181 Équations différentielles Solutions numériques. Perturbation (Mathématiques) MATHEMATICS Differential Equations General. bisacsh MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Differential equations Numerical solutions fast Perturbation (Mathematics) fast |
topic_facet | Differential equations Numerical solutions. Perturbation (Mathematics) Équations différentielles Solutions numériques. Perturbation (Mathématiques) MATHEMATICS Differential Equations General. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Differential equations Numerical solutions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=811823 |
work_keys_str_mv | AT millerjjh fittednumericalmethodsforsingularperturbationproblemserrorestimatesinthemaximumnormforlinearproblemsinoneandtwodimensions AT oriordane fittednumericalmethodsforsingularperturbationproblemserrorestimatesinthemaximumnormforlinearproblemsinoneandtwodimensions AT shishkingi fittednumericalmethodsforsingularperturbationproblemserrorestimatesinthemaximumnormforlinearproblemsinoneandtwodimensions |