Design-oriented feedback analysis:
This tutorial introduces the General Feedback Theorem (GFT). Feedback systems are usually designed with the familiar single-loop block diagram in mind. Various nonidealities, such as unavoidable minor loops and direct forward transmission, make the single-loop block diagram progressively less useful...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch Video |
Sprache: | English |
Veröffentlicht: |
United States
IEEE
2005
|
Schlagworte: | |
Online-Zugang: | FHN01 TUM01 |
Zusammenfassung: | This tutorial introduces the General Feedback Theorem (GFT). Feedback systems are usually designed with the familiar single-loop block diagram in mind. Various nonidealities, such as unavoidable minor loops and direct forward transmission, make the single-loop block diagram progressively less useful. The GFT defines a "natural" block diagram model that is identical in format to the single-loop model that is conventionally assumed; thus providing a desirable link between general feedback theory and a detailed circuit diagram analyzed in terms of factored pole-zero transfer functions. The GFT is illustrated on a potentially unstable Darlington emitter/source follower stage, and leads to design criteria that limit the maximum peaking regardless of the value of the load capacitance. Another example is a two-stage feedback amplifier having various nonidealities, including loading interactions at all points, direct forward transmission, and two minor loops. The GFT is computer friendly and emphasis is on the numerical and graphical results obtained by use of an Intusoft ICAP/4 circuit simulator |
Beschreibung: | Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 10, 2020) |
Beschreibung: | 1 Online-Resource (1 Videodatei, 60 Minuten) color illustrations |
ISBN: | 9780780396593 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047476985 | ||
003 | DE-604 | ||
005 | 20220214 | ||
007 | cr|uuu---uuuuu | ||
008 | 210921s2005 |||| o||u| ||||||eng d | ||
020 | |a 9780780396593 |9 978-0-7803-9659-3 | ||
035 | |a (ZDB-37-ICG)EDP020 | ||
035 | |a (OCoLC)1269395205 | ||
035 | |a (DE-599)BVBBV047476985 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-92 | ||
082 | 0 | |a 621.3815 |2 23 | |
100 | 1 | |a Middlebrook, R. David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Design-oriented feedback analysis |c R. David Middlebrook |
264 | 1 | |a United States |b IEEE |c 2005 | |
300 | |a 1 Online-Resource (1 Videodatei, 60 Minuten) |b color illustrations | ||
336 | |b tdi |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 10, 2020) | ||
520 | |a This tutorial introduces the General Feedback Theorem (GFT). Feedback systems are usually designed with the familiar single-loop block diagram in mind. Various nonidealities, such as unavoidable minor loops and direct forward transmission, make the single-loop block diagram progressively less useful. The GFT defines a "natural" block diagram model that is identical in format to the single-loop model that is conventionally assumed; thus providing a desirable link between general feedback theory and a detailed circuit diagram analyzed in terms of factored pole-zero transfer functions. The GFT is illustrated on a potentially unstable Darlington emitter/source follower stage, and leads to design criteria that limit the maximum peaking regardless of the value of the load capacitance. Another example is a two-stage feedback amplifier having various nonidealities, including loading interactions at all points, direct forward transmission, and two minor loops. The GFT is computer friendly and emphasis is on the numerical and graphical results obtained by use of an Intusoft ICAP/4 circuit simulator | ||
650 | 4 | |a Transfer functions | |
650 | 4 | |a Electronic circuit design | |
655 | 7 | |0 (DE-588)4017102-4 |a Film |2 gnd-content | |
912 | |a ZDB-37-ICG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032878546 | ||
966 | e | |u https://ieeexplore.ieee.org/courses/details/EDP020 |l FHN01 |p ZDB-37-ICG |x Verlag |3 Volltext | |
966 | e | |u https://ieeexplore.ieee.org/courses/details/EDP020 |l TUM01 |p ZDB-37-ICG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182792904376320 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Middlebrook, R. David |
author_facet | Middlebrook, R. David |
author_role | aut |
author_sort | Middlebrook, R. David |
author_variant | r d m rd rdm |
building | Verbundindex |
bvnumber | BV047476985 |
collection | ZDB-37-ICG |
ctrlnum | (ZDB-37-ICG)EDP020 (OCoLC)1269395205 (DE-599)BVBBV047476985 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02461nmm a2200373zc 4500</leader><controlfield tag="001">BV047476985</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210921s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780780396593</subfield><subfield code="9">978-0-7803-9659-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-37-ICG)EDP020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1269395205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047476985</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Middlebrook, R. David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design-oriented feedback analysis</subfield><subfield code="c">R. David Middlebrook</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">United States</subfield><subfield code="b">IEEE</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Resource (1 Videodatei, 60 Minuten)</subfield><subfield code="b">color illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 10, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This tutorial introduces the General Feedback Theorem (GFT). Feedback systems are usually designed with the familiar single-loop block diagram in mind. Various nonidealities, such as unavoidable minor loops and direct forward transmission, make the single-loop block diagram progressively less useful. The GFT defines a "natural" block diagram model that is identical in format to the single-loop model that is conventionally assumed; thus providing a desirable link between general feedback theory and a detailed circuit diagram analyzed in terms of factored pole-zero transfer functions. The GFT is illustrated on a potentially unstable Darlington emitter/source follower stage, and leads to design criteria that limit the maximum peaking regardless of the value of the load capacitance. Another example is a two-stage feedback amplifier having various nonidealities, including loading interactions at all points, direct forward transmission, and two minor loops. The GFT is computer friendly and emphasis is on the numerical and graphical results obtained by use of an Intusoft ICAP/4 circuit simulator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transfer functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuit design</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4017102-4</subfield><subfield code="a">Film</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-ICG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032878546</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/courses/details/EDP020</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-37-ICG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/courses/details/EDP020</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-37-ICG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4017102-4 Film gnd-content |
genre_facet | Film |
id | DE-604.BV047476985 |
illustrated | Illustrated |
index_date | 2024-07-03T18:11:31Z |
indexdate | 2024-07-10T09:13:11Z |
institution | BVB |
isbn | 9780780396593 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032878546 |
oclc_num | 1269395205 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-92 |
owner_facet | DE-91 DE-BY-TUM DE-92 |
physical | 1 Online-Resource (1 Videodatei, 60 Minuten) color illustrations |
psigel | ZDB-37-ICG |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | IEEE |
record_format | marc |
spelling | Middlebrook, R. David Verfasser aut Design-oriented feedback analysis R. David Middlebrook United States IEEE 2005 1 Online-Resource (1 Videodatei, 60 Minuten) color illustrations tdi rdacontent c rdamedia cr rdacarrier Description based on online resource; title from title screen (IEEE Xplore Digital Library, viewed November 10, 2020) This tutorial introduces the General Feedback Theorem (GFT). Feedback systems are usually designed with the familiar single-loop block diagram in mind. Various nonidealities, such as unavoidable minor loops and direct forward transmission, make the single-loop block diagram progressively less useful. The GFT defines a "natural" block diagram model that is identical in format to the single-loop model that is conventionally assumed; thus providing a desirable link between general feedback theory and a detailed circuit diagram analyzed in terms of factored pole-zero transfer functions. The GFT is illustrated on a potentially unstable Darlington emitter/source follower stage, and leads to design criteria that limit the maximum peaking regardless of the value of the load capacitance. Another example is a two-stage feedback amplifier having various nonidealities, including loading interactions at all points, direct forward transmission, and two minor loops. The GFT is computer friendly and emphasis is on the numerical and graphical results obtained by use of an Intusoft ICAP/4 circuit simulator Transfer functions Electronic circuit design (DE-588)4017102-4 Film gnd-content |
spellingShingle | Middlebrook, R. David Design-oriented feedback analysis Transfer functions Electronic circuit design |
subject_GND | (DE-588)4017102-4 |
title | Design-oriented feedback analysis |
title_auth | Design-oriented feedback analysis |
title_exact_search | Design-oriented feedback analysis |
title_exact_search_txtP | Design-oriented feedback analysis |
title_full | Design-oriented feedback analysis R. David Middlebrook |
title_fullStr | Design-oriented feedback analysis R. David Middlebrook |
title_full_unstemmed | Design-oriented feedback analysis R. David Middlebrook |
title_short | Design-oriented feedback analysis |
title_sort | design oriented feedback analysis |
topic | Transfer functions Electronic circuit design |
topic_facet | Transfer functions Electronic circuit design Film |
work_keys_str_mv | AT middlebrookrdavid designorientedfeedbackanalysis |