The Theory and Applications of Statistical Inference Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schriftenreihe: | Lecture Notes in Statistics
44 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph arose out of a desire to develop an approach to statistical inference that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise commonly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and completeness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for inference without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests |
Beschreibung: | 1 Online-Ressource (VI, 124p. 4 illus) |
ISBN: | 9781461238720 9780387967202 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4612-3872-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420169 | ||
003 | DE-604 | ||
005 | 20230508 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461238720 |c Online |9 978-1-4612-3872-0 | ||
020 | |a 9780387967202 |c Print |9 978-0-387-96720-2 | ||
024 | 7 | |a 10.1007/978-1-4612-3872-0 |2 doi | |
035 | |a (OCoLC)863764371 | ||
035 | |a (DE-599)BVBBV042420169 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a McLeish, D. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Theory and Applications of Statistical Inference Functions |c by D. L. McLeish, Christopher G. Small |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (VI, 124p. 4 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Statistics |v 44 |x 0930-0325 | |
500 | |a This monograph arose out of a desire to develop an approach to statistical inference that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise commonly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and completeness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for inference without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Inferenzstatistik |0 (DE-588)4247120-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätzung |0 (DE-588)4193791-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Inferenzstatistik |0 (DE-588)4247120-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Schätzung |0 (DE-588)4193791-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Small, Christopher G. |e Sonstige |4 oth | |
830 | 0 | |a Lecture Notes in Statistics |v 44 |w (DE-604)BV036592911 |9 44 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3872-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855586 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091754295296 |
---|---|
any_adam_object | |
author | McLeish, D. L. |
author_facet | McLeish, D. L. |
author_role | aut |
author_sort | McLeish, D. L. |
author_variant | d l m dl dlm |
building | Verbundindex |
bvnumber | BV042420169 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863764371 (DE-599)BVBBV042420169 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-3872-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03639nmm a2200613zcb4500</leader><controlfield tag="001">BV042420169</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230508 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461238720</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3872-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387967202</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96720-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3872-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863764371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420169</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McLeish, D. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Theory and Applications of Statistical Inference Functions</subfield><subfield code="c">by D. L. McLeish, Christopher G. Small</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 124p. 4 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">44</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph arose out of a desire to develop an approach to statistical inference that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise commonly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and completeness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for inference without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inferenzstatistik</subfield><subfield code="0">(DE-588)4247120-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inferenzstatistik</subfield><subfield code="0">(DE-588)4247120-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Small, Christopher G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">44</subfield><subfield code="w">(DE-604)BV036592911</subfield><subfield code="9">44</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3872-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855586</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420169 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461238720 9780387967202 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855586 |
oclc_num | 863764371 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 124p. 4 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
series | Lecture Notes in Statistics |
series2 | Lecture Notes in Statistics |
spelling | McLeish, D. L. Verfasser aut The Theory and Applications of Statistical Inference Functions by D. L. McLeish, Christopher G. Small New York, NY Springer New York 1988 1 Online-Ressource (VI, 124p. 4 illus) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 44 0930-0325 This monograph arose out of a desire to develop an approach to statistical inference that would be both comprehensive in its treatment of statistical principles and sufficiently powerful to be applicable to a variety of important practical problems. In the latter category, the problems of inference for stochastic processes (which arise commonly in engineering and biological applications) come to mind. Classes of estimating functions seem to be promising in this respect. The monograph examines some of the consequences of extending standard concepts of ancillarity, sufficiency and completeness into this setting. The reader should note that the development is mathematically "mature" in its use of Hilbert space methods but not, we believe, mathematically difficult. This is in keeping with our desire to construct a theory that is rich in statistical tools for inference without the difficulties found in modern developments, such as likelihood analysis of stochastic processes or higher order methods, to name but two. The fundamental notions of orthogonality and projection are accessible to a good undergraduate or beginning graduate student. We hope that the monograph will serve the purpose of enriching the methods available to statisticians of various interests Statistics Statistics, general Statistik Inferenzstatistik (DE-588)4247120-5 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Schätzung (DE-588)4193791-0 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Inferenzstatistik (DE-588)4247120-5 s 1\p DE-604 Statistische Schlussweise (DE-588)4182963-3 s 2\p DE-604 Schätzung (DE-588)4193791-0 s 3\p DE-604 Statistik (DE-588)4056995-0 s 4\p DE-604 Small, Christopher G. Sonstige oth Lecture Notes in Statistics 44 (DE-604)BV036592911 44 https://doi.org/10.1007/978-1-4612-3872-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | McLeish, D. L. The Theory and Applications of Statistical Inference Functions Lecture Notes in Statistics Statistics Statistics, general Statistik Inferenzstatistik (DE-588)4247120-5 gnd Statistische Schlussweise (DE-588)4182963-3 gnd Schätzung (DE-588)4193791-0 gnd Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4247120-5 (DE-588)4182963-3 (DE-588)4193791-0 (DE-588)4056995-0 |
title | The Theory and Applications of Statistical Inference Functions |
title_auth | The Theory and Applications of Statistical Inference Functions |
title_exact_search | The Theory and Applications of Statistical Inference Functions |
title_full | The Theory and Applications of Statistical Inference Functions by D. L. McLeish, Christopher G. Small |
title_fullStr | The Theory and Applications of Statistical Inference Functions by D. L. McLeish, Christopher G. Small |
title_full_unstemmed | The Theory and Applications of Statistical Inference Functions by D. L. McLeish, Christopher G. Small |
title_short | The Theory and Applications of Statistical Inference Functions |
title_sort | the theory and applications of statistical inference functions |
topic | Statistics Statistics, general Statistik Inferenzstatistik (DE-588)4247120-5 gnd Statistische Schlussweise (DE-588)4182963-3 gnd Schätzung (DE-588)4193791-0 gnd Statistik (DE-588)4056995-0 gnd |
topic_facet | Statistics Statistics, general Statistik Inferenzstatistik Statistische Schlussweise Schätzung |
url | https://doi.org/10.1007/978-1-4612-3872-0 |
volume_link | (DE-604)BV036592911 |
work_keys_str_mv | AT mcleishdl thetheoryandapplicationsofstatisticalinferencefunctions AT smallchristopherg thetheoryandapplicationsofstatisticalinferencefunctions |