Revisiting the de Rham-Witt complex:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Paris
Société Mathématique de France
2021
|
Schriftenreihe: | Astérisque
424 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | viii, 165 Seiten |
ISBN: | 9782856299371 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV047361221 | ||
003 | DE-604 | ||
005 | 20210714 | ||
007 | t | ||
008 | 210707s2021 |||| 00||| eng d | ||
020 | |a 9782856299371 |9 978-2-85629-937-1 | ||
024 | 7 | |a 10.24033/ast.1146 |2 doi | |
035 | |a (OCoLC)1259331594 | ||
035 | |a (DE-599)KXP1761378775 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-29T |a DE-355 | ||
084 | |a SI 832 |0 (DE-625)143196: |2 rvk | ||
100 | 1 | |a Bhatt, Bhargav |e Verfasser |0 (DE-588)1193438020 |4 aut | |
245 | 1 | 0 | |a Revisiting the de Rham-Witt complex |c Bhargav Bhatt, Jacob Lurie & Akhil Mathew |
264 | 1 | |a Paris |b Société Mathématique de France |c 2021 | |
264 | 4 | |c © 2020 | |
300 | |a viii, 165 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Astérisque |v 424 | |
546 | |a Mit einer Zusammenfassung in englischer und französischer Sprache | ||
700 | 1 | |a Lurie, Jacob |d 1977- |e Verfasser |0 (DE-588)139905529 |4 aut | |
700 | 1 | |a Mathew, Akhil |e Verfasser |0 (DE-588)1236164709 |4 aut | |
830 | 0 | |a Astérisque |v 424 |w (DE-604)BV002579439 |9 424 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032763200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032763200 |
Datensatz im Suchindex
_version_ | 1804182592304447488 |
---|---|
adam_text | CONTENTS 1. Introduction ........................................................................................................ 1.1. The de Rham-Witt complex ..................................................................... 1.2. Overview of the Construction .................................................................. 1.3. Motivation via the Lt? Functor ................................................................ 1.4. Notation and Terminology ........................................................................ 1.5. Prerequisites ............................................................................................... 1.6. Acknowledgments ....................................................................................... Parti. Construction of 1 1 2 6 8 9 9 ................................................................................ 11 2. Dieudonné Complexes ....................................................................................... 2.1. The Category DC ..................................................................................... 2.2. Saturated Dieudonné Complexes ............................................................ 2.3. Saturation of Dieudonné Complexes ....................................................... 2.4. The Cartier Criterion ................................................................................ 2.5. Strict Dieudonné Complexes .................................................................... 2.6. Strict Dieudonné Towers
........................................................................... 2.7. The Completion of a Saturated Dieudonné Complex ........................... 2.8. Comparison of Μ* with ............................................................. 2.9. More on Strict Dieudonné Towers ........................................................... 13 13 14 15 16 19 21 23 26 27 3. Dieudonné Algebras ........................................................................................... 3.1. The Category DA ...................................................................................... 3.2. Example: The de Rham Complex ........................................................... 3.3. The Cartier Isomorphism .......................................................................... 3.4. Saturated Dieudonné Algebras ................................................................ 3.5. Completions of Saturated Dieudonné Algebras ..................................... 3.6. Comparison with Witt Vectors ................................................................ 3.7. Aside: Rings with p-Torsion ..................................................................... 29 29 31 33 35 36 38 41 4. The Saturated de Rham-Witt Complex ............................................................ 4.1. Construction of Ωβ ............................................................................... 4.2. Comparison with a Smooth Lift .............................................................. 4.3. Comparison with the de Rham Complex ............................................... 4.4.
The Classical de Rham-Witt Complex ................................................... 43 43 45 46 48 5. Localizations of Dieudonné Algebras ............................................................... 5.1. Localization for the Zariski Topology ..................................................... 55 55 It SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021
CONTENTS viii The saturated de Rham-Witt Complex of an Fp-Scheme .................... Localization for the étale Topology ......................................................... Digression: Witt Vectors and étale Morphisms ..................................... The Proof of Theorem 5.3.4 ..................................................................... 58 60 63 θθ 6. The Case of a Cusp ............................................................................................. 6.1. Digression: The de Rham Complex of a Graded Ring ......................... 6.2. The Saturated de Rham-Witt Complex of a Cusp ............................... 6.3. The Classical de Rham-Witt Complex of a Cusp ................................. 6.4. The Crystalline Cohomology of a Cusp .................................................. 6.5. Seminormality ............................................................................................. 6.6. The Proof of Theorem 6.5.3 ...................................................................... 71 72 73 74 75 76 78 Partii. Complements and Applications .............................................................. 81 7. Homological Algebra.......................................................................................... 7.1. p-Complete Objects of the Derived Category ........................................ 7.2. The Functor Εηρ ........................................................................................ 7.3. Fixed Points of Lηp■. 1-Categorical Version ............................................ 7.4. Fixed Points of Lz/P:
oo-Categorical Version ......................................... 7.5. The Proof of Theorem 7.4.7 ..................................................................... 7.6. Tensor Products of Strict Dieudonné Complexes .................................. 83 84 87 89 92 95 98 8. The Nygaard Filtration ...................................................................................... 8.1. The Nygaard Filtration of a Saturated Dieudonné Complex .............. 8.2. The Nygaard Filtration of a Completion ................................................ 8.3. Dieudonné Complexes of Cartier Type ................................................... 8.4. The Nygaard Filtration and Σ,ηρ via Filtered Derived Categories . .. 103 104 105 107 108 9. The Derived de Rham-Witt Complex ............................................................... 9.1. Lax Fixed Points ........................................................................................ 9.2. Digression: Nonabelian Derived Functors .............................................. 9.3. Saturated Derived Crystalline Cohomology ........................................... 9.4. Comparison with the de Rham complex ................................................. 9.5. The de Rham comparison for regular Fp-algebras, redux ................... 113 113 115 117 122 125 10. Comparison with Crystalline Cohomology .................................................... 10.1. Introduction .............................................................................................. 10.2. Construction of the Comparison Map
................................................... 10.3. Endomorphisms of the de Rham Functor ............................................. 10.4. Uniqueness of the Comparison Map ...................................................... 133 133 135 141 145 11. The Crystalline Comparison for ΑΩ ............................................................... 11.1. Review of the Construction of ΑΩ ........................................................ 11.2. The First Formulation of the Main Comparison Theorem ................ 11.3. Extracting a Presheaf of Strict Dieudonné Algebras from ΑΩχ .... 11.4. Comparison with the de Rham-Witt Complex .................................... 147 147 149 150 156 Bibliography ............................................................................................................ 161 5.2. 5.3. 5.4. 5.5. ASTÉRISQUE 424
|
adam_txt |
CONTENTS 1. Introduction . 1.1. The de Rham-Witt complex . 1.2. Overview of the Construction . 1.3. Motivation via the Lt? Functor . 1.4. Notation and Terminology . 1.5. Prerequisites . 1.6. Acknowledgments . Parti. Construction of 1 1 2 6 8 9 9 . 11 2. Dieudonné Complexes . 2.1. The Category DC . 2.2. Saturated Dieudonné Complexes . 2.3. Saturation of Dieudonné Complexes . 2.4. The Cartier Criterion . 2.5. Strict Dieudonné Complexes . 2.6. Strict Dieudonné Towers
. 2.7. The Completion of a Saturated Dieudonné Complex . 2.8. Comparison of Μ* with . 2.9. More on Strict Dieudonné Towers . 13 13 14 15 16 19 21 23 26 27 3. Dieudonné Algebras . 3.1. The Category DA . 3.2. Example: The de Rham Complex . 3.3. The Cartier Isomorphism . 3.4. Saturated Dieudonné Algebras . 3.5. Completions of Saturated Dieudonné Algebras . 3.6. Comparison with Witt Vectors . 3.7. Aside: Rings with p-Torsion . 29 29 31 33 35 36 38 41 4. The Saturated de Rham-Witt Complex . 4.1. Construction of Ωβ . 4.2. Comparison with a Smooth Lift . 4.3. Comparison with the de Rham Complex . 4.4.
The Classical de Rham-Witt Complex . 43 43 45 46 48 5. Localizations of Dieudonné Algebras . 5.1. Localization for the Zariski Topology . 55 55 It SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2021
CONTENTS viii The saturated de Rham-Witt Complex of an Fp-Scheme . Localization for the étale Topology . Digression: Witt Vectors and étale Morphisms . The Proof of Theorem 5.3.4 . 58 60 63 θθ 6. The Case of a Cusp . 6.1. Digression: The de Rham Complex of a Graded Ring . 6.2. The Saturated de Rham-Witt Complex of a Cusp . 6.3. The Classical de Rham-Witt Complex of a Cusp . 6.4. The Crystalline Cohomology of a Cusp . 6.5. Seminormality . 6.6. The Proof of Theorem 6.5.3 . 71 72 73 74 75 76 78 Partii. Complements and Applications . 81 7. Homological Algebra. 7.1. p-Complete Objects of the Derived Category . 7.2. The Functor Εηρ . 7.3. Fixed Points of Lηp■. 1-Categorical Version . 7.4. Fixed Points of Lz/P:
oo-Categorical Version . 7.5. The Proof of Theorem 7.4.7 . 7.6. Tensor Products of Strict Dieudonné Complexes . 83 84 87 89 92 95 98 8. The Nygaard Filtration . 8.1. The Nygaard Filtration of a Saturated Dieudonné Complex . 8.2. The Nygaard Filtration of a Completion . 8.3. Dieudonné Complexes of Cartier Type . 8.4. The Nygaard Filtration and Σ,ηρ via Filtered Derived Categories . . 103 104 105 107 108 9. The Derived de Rham-Witt Complex . 9.1. Lax Fixed Points . 9.2. Digression: Nonabelian Derived Functors . 9.3. Saturated Derived Crystalline Cohomology . 9.4. Comparison with the de Rham complex . 9.5. The de Rham comparison for regular Fp-algebras, redux . 113 113 115 117 122 125 10. Comparison with Crystalline Cohomology . 10.1. Introduction . 10.2. Construction of the Comparison Map
. 10.3. Endomorphisms of the de Rham Functor . 10.4. Uniqueness of the Comparison Map . 133 133 135 141 145 11. The Crystalline Comparison for ΑΩ . 11.1. Review of the Construction of ΑΩ . 11.2. The First Formulation of the Main Comparison Theorem . 11.3. Extracting a Presheaf of Strict Dieudonné Algebras from ΑΩχ . 11.4. Comparison with the de Rham-Witt Complex . 147 147 149 150 156 Bibliography . 161 5.2. 5.3. 5.4. 5.5. ASTÉRISQUE 424 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bhatt, Bhargav Lurie, Jacob 1977- Mathew, Akhil |
author_GND | (DE-588)1193438020 (DE-588)139905529 (DE-588)1236164709 |
author_facet | Bhatt, Bhargav Lurie, Jacob 1977- Mathew, Akhil |
author_role | aut aut aut |
author_sort | Bhatt, Bhargav |
author_variant | b b bb j l jl a m am |
building | Verbundindex |
bvnumber | BV047361221 |
classification_rvk | SI 832 |
ctrlnum | (OCoLC)1259331594 (DE-599)KXP1761378775 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01484nam a2200361 cb4500</leader><controlfield tag="001">BV047361221</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210714 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210707s2021 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782856299371</subfield><subfield code="9">978-2-85629-937-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.24033/ast.1146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1259331594</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1761378775</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 832</subfield><subfield code="0">(DE-625)143196:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhatt, Bhargav</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1193438020</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revisiting the de Rham-Witt complex</subfield><subfield code="c">Bhargav Bhatt, Jacob Lurie & Akhil Mathew</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">Société Mathématique de France</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">viii, 165 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Astérisque</subfield><subfield code="v">424</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Mit einer Zusammenfassung in englischer und französischer Sprache</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lurie, Jacob</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139905529</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mathew, Akhil</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1236164709</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Astérisque</subfield><subfield code="v">424</subfield><subfield code="w">(DE-604)BV002579439</subfield><subfield code="9">424</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032763200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032763200</subfield></datafield></record></collection> |
id | DE-604.BV047361221 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:41:17Z |
indexdate | 2024-07-10T09:10:00Z |
institution | BVB |
isbn | 9782856299371 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032763200 |
oclc_num | 1259331594 |
open_access_boolean | |
owner | DE-384 DE-29T DE-355 DE-BY-UBR |
owner_facet | DE-384 DE-29T DE-355 DE-BY-UBR |
physical | viii, 165 Seiten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Société Mathématique de France |
record_format | marc |
series | Astérisque |
series2 | Astérisque |
spelling | Bhatt, Bhargav Verfasser (DE-588)1193438020 aut Revisiting the de Rham-Witt complex Bhargav Bhatt, Jacob Lurie & Akhil Mathew Paris Société Mathématique de France 2021 © 2020 viii, 165 Seiten txt rdacontent n rdamedia nc rdacarrier Astérisque 424 Mit einer Zusammenfassung in englischer und französischer Sprache Lurie, Jacob 1977- Verfasser (DE-588)139905529 aut Mathew, Akhil Verfasser (DE-588)1236164709 aut Astérisque 424 (DE-604)BV002579439 424 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032763200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bhatt, Bhargav Lurie, Jacob 1977- Mathew, Akhil Revisiting the de Rham-Witt complex Astérisque |
title | Revisiting the de Rham-Witt complex |
title_auth | Revisiting the de Rham-Witt complex |
title_exact_search | Revisiting the de Rham-Witt complex |
title_exact_search_txtP | Revisiting the de Rham-Witt complex |
title_full | Revisiting the de Rham-Witt complex Bhargav Bhatt, Jacob Lurie & Akhil Mathew |
title_fullStr | Revisiting the de Rham-Witt complex Bhargav Bhatt, Jacob Lurie & Akhil Mathew |
title_full_unstemmed | Revisiting the de Rham-Witt complex Bhargav Bhatt, Jacob Lurie & Akhil Mathew |
title_short | Revisiting the de Rham-Witt complex |
title_sort | revisiting the de rham witt complex |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032763200&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002579439 |
work_keys_str_mv | AT bhattbhargav revisitingthederhamwittcomplex AT luriejacob revisitingthederhamwittcomplex AT mathewakhil revisitingthederhamwittcomplex |