Measuring Disaster Crop Production Losses using Survey Microdata: Evidence from Sub-Saharan Africa
Every year, disasters account for billions of dollars in crop production losses in low- and middle-income countries and particularly threaten the lives and livelihoods of those depending on agriculture. With climate change accelerating, this burden will likely increase in the future and accurate, mi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2022
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Every year, disasters account for billions of dollars in crop production losses in low- and middle-income countries and particularly threaten the lives and livelihoods of those depending on agriculture. With climate change accelerating, this burden will likely increase in the future and accurate, micro-level measurement of crop losses will be important to understand disasters' implications for livelihoods, prevent humanitarian crises, and build future resilience. Survey data present a large, rich, highly disaggregated information source that is trialed and tested to the specifications of smallholder agriculture common in low- and middle-income countries. However, to tap into this potential, a thorough understanding of and robust methodology for measuring disaster crop production losses in survey microdata is essential. This paper exploits plot-level panel data for almost 20,000 plots on 8,000 farms in three Sub-Saharan African countries with information on harvest, input use, and different proxies of losses; household and community-level data; as well data from other sources such as crop cutting and survey experiments, to provide new insights into the reliability of survey-based crop loss estimates and their attribution to disasters. The paper concludes with concrete recommendations for methodology and survey design and identifies key avenues for further research |
Beschreibung: | 1 Online-Ressource (62 Seiten) |
DOI: | 10.1596/1813-9450-9968 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049080573 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 230731s2022 xxu|||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9968 |2 doi | |
035 | |a (ZDB-1-WBA)077583787 | ||
035 | |a (OCoLC)1392142932 | ||
035 | |a (DE-599)KEP077583787 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Markhof, Yannick Valentin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Measuring Disaster Crop Production Losses using Survey Microdata |b Evidence from Sub-Saharan Africa |c Yannick Valentin Markhof |
264 | 1 | |a Washington, D.C |b The World Bank |c 2022 | |
300 | |a 1 Online-Ressource (62 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Every year, disasters account for billions of dollars in crop production losses in low- and middle-income countries and particularly threaten the lives and livelihoods of those depending on agriculture. With climate change accelerating, this burden will likely increase in the future and accurate, micro-level measurement of crop losses will be important to understand disasters' implications for livelihoods, prevent humanitarian crises, and build future resilience. Survey data present a large, rich, highly disaggregated information source that is trialed and tested to the specifications of smallholder agriculture common in low- and middle-income countries. However, to tap into this potential, a thorough understanding of and robust methodology for measuring disaster crop production losses in survey microdata is essential. This paper exploits plot-level panel data for almost 20,000 plots on 8,000 farms in three Sub-Saharan African countries with information on harvest, input use, and different proxies of losses; household and community-level data; as well data from other sources such as crop cutting and survey experiments, to provide new insights into the reliability of survey-based crop loss estimates and their attribution to disasters. The paper concludes with concrete recommendations for methodology and survey design and identifies key avenues for further research | |
650 | 4 | |a Agriculture | |
650 | 4 | |a Climate Change and Agriculture | |
650 | 4 | |a Climate Change and Environment | |
650 | 4 | |a Climate Change and Health | |
650 | 4 | |a Climate Change Impact | |
650 | 4 | |a Crop Management | |
650 | 4 | |a Disaster Risk Reduction Strategies | |
650 | 4 | |a Education | |
650 | 4 | |a Educational Sciences | |
650 | 4 | |a Environment | |
650 | 4 | |a Flood | |
650 | 4 | |a Food Security | |
650 | 4 | |a Natural Disasters | |
650 | 4 | |a Post Disaster Needs Assessment | |
650 | 4 | |a Science of Climate Change | |
700 | 1 | |a Ponzini, Giulia |e Sonstige |4 oth | |
700 | 1 | |a Wollburg, Philip Randolph |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9968 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034342464 |
Datensatz im Suchindex
_version_ | 1812671843107078144 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Markhof, Yannick Valentin |
author_facet | Markhof, Yannick Valentin |
author_role | aut |
author_sort | Markhof, Yannick Valentin |
author_variant | y v m yv yvm |
building | Verbundindex |
bvnumber | BV049080573 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)077583787 (OCoLC)1392142932 (DE-599)KEP077583787 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9968 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049080573</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230731s2022 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9968</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)077583787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392142932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP077583787</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Markhof, Yannick Valentin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Measuring Disaster Crop Production Losses using Survey Microdata</subfield><subfield code="b">Evidence from Sub-Saharan Africa</subfield><subfield code="c">Yannick Valentin Markhof</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (62 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Every year, disasters account for billions of dollars in crop production losses in low- and middle-income countries and particularly threaten the lives and livelihoods of those depending on agriculture. With climate change accelerating, this burden will likely increase in the future and accurate, micro-level measurement of crop losses will be important to understand disasters' implications for livelihoods, prevent humanitarian crises, and build future resilience. Survey data present a large, rich, highly disaggregated information source that is trialed and tested to the specifications of smallholder agriculture common in low- and middle-income countries. However, to tap into this potential, a thorough understanding of and robust methodology for measuring disaster crop production losses in survey microdata is essential. This paper exploits plot-level panel data for almost 20,000 plots on 8,000 farms in three Sub-Saharan African countries with information on harvest, input use, and different proxies of losses; household and community-level data; as well data from other sources such as crop cutting and survey experiments, to provide new insights into the reliability of survey-based crop loss estimates and their attribution to disasters. The paper concludes with concrete recommendations for methodology and survey design and identifies key avenues for further research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change and Agriculture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change and Environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change and Health</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate Change Impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crop Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disaster Risk Reduction Strategies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Education</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Educational Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Food Security</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Disasters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post Disaster Needs Assessment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science of Climate Change</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ponzini, Giulia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wollburg, Philip Randolph</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9968</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034342464</subfield></datafield></record></collection> |
id | DE-604.BV049080573 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:27:57Z |
indexdate | 2024-10-12T04:03:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034342464 |
oclc_num | 1392142932 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (62 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Markhof, Yannick Valentin Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa Agriculture Climate Change and Agriculture Climate Change and Environment Climate Change and Health Climate Change Impact Crop Management Disaster Risk Reduction Strategies Education Educational Sciences Environment Flood Food Security Natural Disasters Post Disaster Needs Assessment Science of Climate Change |
title | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa |
title_auth | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa |
title_exact_search | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa |
title_exact_search_txtP | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa |
title_full | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa Yannick Valentin Markhof |
title_fullStr | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa Yannick Valentin Markhof |
title_full_unstemmed | Measuring Disaster Crop Production Losses using Survey Microdata Evidence from Sub-Saharan Africa Yannick Valentin Markhof |
title_short | Measuring Disaster Crop Production Losses using Survey Microdata |
title_sort | measuring disaster crop production losses using survey microdata evidence from sub saharan africa |
title_sub | Evidence from Sub-Saharan Africa |
topic | Agriculture Climate Change and Agriculture Climate Change and Environment Climate Change and Health Climate Change Impact Crop Management Disaster Risk Reduction Strategies Education Educational Sciences Environment Flood Food Security Natural Disasters Post Disaster Needs Assessment Science of Climate Change |
topic_facet | Agriculture Climate Change and Agriculture Climate Change and Environment Climate Change and Health Climate Change Impact Crop Management Disaster Risk Reduction Strategies Education Educational Sciences Environment Flood Food Security Natural Disasters Post Disaster Needs Assessment Science of Climate Change |
url | https://doi.org/10.1596/1813-9450-9968 |
work_keys_str_mv | AT markhofyannickvalentin measuringdisastercropproductionlossesusingsurveymicrodataevidencefromsubsaharanafrica AT ponzinigiulia measuringdisastercropproductionlossesusingsurveymicrodataevidencefromsubsaharanafrica AT wollburgphiliprandolph measuringdisastercropproductionlossesusingsurveymicrodataevidencefromsubsaharanafrica |