Artificial neural networks for engineers and scientists: solving ordinary differential equations
"Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been deve...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
[2017]
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext Volltext Inhaltstext |
Zusammenfassung: | "Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied."--Provided by publisher 1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs 1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xvii, 150 Seiten) |
ISBN: | 9781351651318 9781315155265 9781498781404 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV046205135 | ||
003 | DE-604 | ||
005 | 20191025 | ||
007 | cr|uuu---uuuuu | ||
008 | 191018s2017 xxu|||| o||u| ||||||eng d | ||
020 | |a 9781351651318 |c electronic bk |9 978-1-351-65131-8 | ||
020 | |a 9781315155265 |c electronic bk |9 978-1-315-15526-5 | ||
020 | |a 9781498781404 |c electronic bk |9 978-1-4987-8140-4 | ||
035 | |a (OCoLC)1125184793 | ||
035 | |a (DE-599)GBV898076617 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US |a xxk |c XA-GB | ||
049 | |a DE-92 | ||
050 | 0 | |a QA372 | |
082 | 0 | |a 515/.3520285632 | |
100 | 1 | |a Chakraverty, Snehashish |e Verfasser |4 aut | |
245 | 1 | 0 | |a Artificial neural networks for engineers and scientists |b solving ordinary differential equations |c Snehashish Chakraverty & Susmita Mall |
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c [2017] | |
300 | |a 1 Online-Ressource (xvii, 150 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied."--Provided by publisher | |
520 | 3 | |a 1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs | |
520 | 3 | |a 1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Differential equations | |
653 | 0 | |a Engineering mathematics | |
653 | 0 | |a Artificial intelligence | |
653 | 0 | |a Differential equations / Data processing | |
653 | 0 | |a Engineering mathematics / Data processing | |
653 | 6 | |a Electronic books | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Mall, Susmita |e Verfasser |4 aut | |
856 | 4 | 0 | |m X:EBSCO |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1560867 |x Verlag |3 Volltext |
856 | 4 | 0 | |u https://www.taylorfrancis.com/books/9781498781404 |x Verlag |3 Volltext |
856 | 4 | 2 | |m B:ZBM |m V:DE-601 |q pdf/application |u http://zbmath.org/?q=an:1375.00005 |v 2018-04-25 |x Verlag |y Zentralblatt MATH |3 Inhaltstext |
912 | |a ZDB-7-TFC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-031584158 | ||
966 | e | |u https://doi.org/10.1201/9781315155265 |l FHN01 |p ZDB-7-TFC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804180590793064448 |
---|---|
any_adam_object | |
author | Chakraverty, Snehashish Mall, Susmita |
author_facet | Chakraverty, Snehashish Mall, Susmita |
author_role | aut aut |
author_sort | Chakraverty, Snehashish |
author_variant | s c sc s m sm |
building | Verbundindex |
bvnumber | BV046205135 |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 |
callnumber-search | QA372 |
callnumber-sort | QA 3372 |
callnumber-subject | QA - Mathematics |
collection | ZDB-7-TFC |
ctrlnum | (OCoLC)1125184793 (DE-599)GBV898076617 |
dewey-full | 515/.3520285632 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3520285632 |
dewey-search | 515/.3520285632 |
dewey-sort | 3515 103520285632 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03328nmm a22005291c 4500</leader><controlfield tag="001">BV046205135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191025 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">191018s2017 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781351651318</subfield><subfield code="c">electronic bk</subfield><subfield code="9">978-1-351-65131-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781315155265</subfield><subfield code="c">electronic bk</subfield><subfield code="9">978-1-315-15526-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781498781404</subfield><subfield code="c">electronic bk</subfield><subfield code="9">978-1-4987-8140-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1125184793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV898076617</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA372</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.3520285632</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chakraverty, Snehashish</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial neural networks for engineers and scientists</subfield><subfield code="b">solving ordinary differential equations</subfield><subfield code="c">Snehashish Chakraverty & Susmita Mall</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 150 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied."--Provided by publisher</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering mathematics / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mall, Susmita</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:EBSCO</subfield><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1560867</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.taylorfrancis.com/books/9781498781404</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:ZBM</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://zbmath.org/?q=an:1375.00005</subfield><subfield code="v">2018-04-25</subfield><subfield code="x">Verlag</subfield><subfield code="y">Zentralblatt MATH</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-031584158</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781315155265</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046205135 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:38:11Z |
institution | BVB |
isbn | 9781351651318 9781315155265 9781498781404 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-031584158 |
oclc_num | 1125184793 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | 1 Online-Ressource (xvii, 150 Seiten) |
psigel | ZDB-7-TFC |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | CRC Press |
record_format | marc |
spelling | Chakraverty, Snehashish Verfasser aut Artificial neural networks for engineers and scientists solving ordinary differential equations Snehashish Chakraverty & Susmita Mall Boca Raton ; London ; New York CRC Press [2017] 1 Online-Ressource (xvii, 150 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied."--Provided by publisher 1.5 Activation Functions 1.5.1 Sigmoid Function ; 1.5.1.1 Unipolar Sigmoid Function ; 1.5.1.2 Bipolar Sigmoid Function ; 1.5.2 Tangent Hyperbolic Function ; References ; Chapter 2: Preliminaries of Ordinary Differential Equations ; 2.1 Definitions ; 2.1.1 Order and Degree of DEs Artificial intelligence Differential equations Engineering mathematics Differential equations / Data processing Engineering mathematics / Data processing Electronic books Mall, Susmita Verfasser aut X:EBSCO http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1560867 Verlag Volltext https://www.taylorfrancis.com/books/9781498781404 Verlag Volltext B:ZBM V:DE-601 pdf/application http://zbmath.org/?q=an:1375.00005 2018-04-25 Verlag Zentralblatt MATH Inhaltstext |
spellingShingle | Chakraverty, Snehashish Mall, Susmita Artificial neural networks for engineers and scientists solving ordinary differential equations |
title | Artificial neural networks for engineers and scientists solving ordinary differential equations |
title_auth | Artificial neural networks for engineers and scientists solving ordinary differential equations |
title_exact_search | Artificial neural networks for engineers and scientists solving ordinary differential equations |
title_full | Artificial neural networks for engineers and scientists solving ordinary differential equations Snehashish Chakraverty & Susmita Mall |
title_fullStr | Artificial neural networks for engineers and scientists solving ordinary differential equations Snehashish Chakraverty & Susmita Mall |
title_full_unstemmed | Artificial neural networks for engineers and scientists solving ordinary differential equations Snehashish Chakraverty & Susmita Mall |
title_short | Artificial neural networks for engineers and scientists |
title_sort | artificial neural networks for engineers and scientists solving ordinary differential equations |
title_sub | solving ordinary differential equations |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1560867 https://www.taylorfrancis.com/books/9781498781404 http://zbmath.org/?q=an:1375.00005 |
work_keys_str_mv | AT chakravertysnehashish artificialneuralnetworksforengineersandscientistssolvingordinarydifferentialequations AT mallsusmita artificialneuralnetworksforengineersandscientistssolvingordinarydifferentialequations |