Optimization algorithms on matrix manifolds /:
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. ; Woodstock :
Princeton University Press,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia. |
Beschreibung: | 1 online resource (xiv, 224 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400830244 1400830249 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn438732716 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090924s2008 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d CDX |d BUF |d EBLCP |d IDEBK |d E7B |d AZU |d OCLCQ |d CNCGM |d MHW |d OCLCQ |d REDDC |d OCLCQ |d UMI |d OCLCO |d DEBSZ |d JSTOR |d OCLCF |d OCLCQ |d YDXCP |d MERUC |d OCLCQ |d S3O |d OCLCQ |d COO |d AZK |d LOA |d AGLDB |d CUS |d JBG |d MOR |d PIFAG |d ZCU |d OTZ |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d CEF |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d MM9 |d UWK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
015 | |a GBA781606 |2 bnb | ||
016 | 7 | |a 014057164 |2 Uk | |
019 | |a 432996612 |a 519865987 |a 535937322 |a 647823321 |a 656454368 |a 817741630 |a 961497220 |a 962576398 |a 966092048 |a 988427742 |a 992075769 |a 994927424 |a 1037912493 |a 1038575644 |a 1045511725 |a 1055390180 |a 1062884294 | ||
020 | |a 9781400830244 |q (electronic bk.) | ||
020 | |a 1400830249 |q (electronic bk.) | ||
020 | |z 0691132984 |q (cloth) | ||
020 | |z 9780691132983 |q (hbk.) | ||
024 | 8 | |a 9786612158230 | |
035 | |a (OCoLC)438732716 |z (OCoLC)432996612 |z (OCoLC)519865987 |z (OCoLC)535937322 |z (OCoLC)647823321 |z (OCoLC)656454368 |z (OCoLC)817741630 |z (OCoLC)961497220 |z (OCoLC)962576398 |z (OCoLC)966092048 |z (OCoLC)988427742 |z (OCoLC)992075769 |z (OCoLC)994927424 |z (OCoLC)1037912493 |z (OCoLC)1038575644 |z (OCoLC)1045511725 |z (OCoLC)1055390180 |z (OCoLC)1062884294 | ||
037 | |a 215823 |b MIL | ||
037 | |a 22573/cttxtxh |b JSTOR | ||
050 | 4 | |a QA402.5 |b .A27 2008eb | |
072 | 7 | |a MAT |x 041000 |2 bisacsh | |
072 | 7 | |a MAT003000 |2 bisacsh | |
072 | 7 | |a TEC009000 |2 bisacsh | |
072 | 7 | |a COM014000 |2 bisacsh | |
082 | 7 | |a 518.1 |2 22 | |
084 | |a SK 915 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Absil, P.-A., |e author. | |
245 | 1 | 0 | |a Optimization algorithms on matrix manifolds / |c P.-A. Absil, R. Mahony, R. Sepulchre. |
260 | |a Princeton, N.J. ; |a Woodstock : |b Princeton University Press, |c ©2008. | ||
300 | |a 1 online resource (xiv, 224 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
520 | |a Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms. | |
650 | 0 | |a Mathematical optimization. |0 http://id.loc.gov/authorities/subjects/sh85082127 | |
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 0 | |a Algorithms. |0 http://id.loc.gov/authorities/subjects/sh85003487 | |
650 | 2 | |a Algorithms |0 https://id.nlm.nih.gov/mesh/D000465 | |
650 | 6 | |a Optimisation mathématique. | |
650 | 6 | |a Matrices. | |
650 | 6 | |a Algorithmes. | |
650 | 7 | |a algorithms. |2 aat | |
650 | 7 | |a MATHEMATICS |x Numerical Analysis. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a Algorithms |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a Matriser (matematik) |2 sao | |
650 | 7 | |a Optimering. |2 sao | |
650 | 7 | |a Algoritmer. |2 sao | |
700 | 1 | |a Mahony, R. |q (Robert), |d 1967- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjKv3P6Ry6YRfQrvFQmBMX |0 http://id.loc.gov/authorities/names/nb2008002517 | |
700 | 1 | |a Sepulchre, R. |q (Rodolphe), |d 1967- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJjxxfgVJdvFxhfV68fH4q |0 http://id.loc.gov/authorities/names/n96106714 | |
758 | |i has work: |a Optimization algorithms on matrix manifolds (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGxTrRQbFkp9Cg7xmhg4tq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Absil, P.-A. |t Optimization algorithms on matrix manifolds. |d Princeton, N.J. ; Woodstock : Princeton University Press, ©2008 |z 9780691132983 |z 0691132984 |w (DLC) 2007927538 |w (OCoLC)174129993 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286720 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28057041 | ||
938 | |a Coutts Information Services |b COUT |n 10561895 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL457711 | ||
938 | |a ebrary |b EBRY |n ebr10312553 | ||
938 | |a EBSCOhost |b EBSC |n 286720 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 215823 | ||
938 | |a YBP Library Services |b YANK |n 3061257 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn438732716 |
---|---|
_version_ | 1816881698825043968 |
adam_text | |
any_adam_object | |
author | Absil, P.-A Mahony, R. (Robert), 1967- Sepulchre, R. (Rodolphe), 1967- |
author_GND | http://id.loc.gov/authorities/names/nb2008002517 http://id.loc.gov/authorities/names/n96106714 |
author_facet | Absil, P.-A Mahony, R. (Robert), 1967- Sepulchre, R. (Rodolphe), 1967- |
author_role | aut aut aut |
author_sort | Absil, P.-A |
author_variant | p a a paa r m rm r s rs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.5 .A27 2008eb |
callnumber-search | QA402.5 .A27 2008eb |
callnumber-sort | QA 3402.5 A27 42008EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 915 |
collection | ZDB-4-EBA |
contents | Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms. |
ctrlnum | (OCoLC)438732716 |
dewey-full | 518.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.1 |
dewey-search | 518.1 |
dewey-sort | 3518.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05188cam a2200817 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn438732716</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090924s2008 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">BUF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">AZU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CNCGM</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UMI</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S3O</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CUS</subfield><subfield code="d">JBG</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MM9</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA781606</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">014057164</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">432996612</subfield><subfield code="a">519865987</subfield><subfield code="a">535937322</subfield><subfield code="a">647823321</subfield><subfield code="a">656454368</subfield><subfield code="a">817741630</subfield><subfield code="a">961497220</subfield><subfield code="a">962576398</subfield><subfield code="a">966092048</subfield><subfield code="a">988427742</subfield><subfield code="a">992075769</subfield><subfield code="a">994927424</subfield><subfield code="a">1037912493</subfield><subfield code="a">1038575644</subfield><subfield code="a">1045511725</subfield><subfield code="a">1055390180</subfield><subfield code="a">1062884294</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400830244</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400830249</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691132984</subfield><subfield code="q">(cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691132983</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612158230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)438732716</subfield><subfield code="z">(OCoLC)432996612</subfield><subfield code="z">(OCoLC)519865987</subfield><subfield code="z">(OCoLC)535937322</subfield><subfield code="z">(OCoLC)647823321</subfield><subfield code="z">(OCoLC)656454368</subfield><subfield code="z">(OCoLC)817741630</subfield><subfield code="z">(OCoLC)961497220</subfield><subfield code="z">(OCoLC)962576398</subfield><subfield code="z">(OCoLC)966092048</subfield><subfield code="z">(OCoLC)988427742</subfield><subfield code="z">(OCoLC)992075769</subfield><subfield code="z">(OCoLC)994927424</subfield><subfield code="z">(OCoLC)1037912493</subfield><subfield code="z">(OCoLC)1038575644</subfield><subfield code="z">(OCoLC)1045511725</subfield><subfield code="z">(OCoLC)1055390180</subfield><subfield code="z">(OCoLC)1062884294</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">215823</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttxtxh</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA402.5</subfield><subfield code="b">.A27 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC009000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">518.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 915</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Absil, P.-A.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization algorithms on matrix manifolds /</subfield><subfield code="c">P.-A. Absil, R. Mahony, R. Sepulchre.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. ;</subfield><subfield code="a">Woodstock :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 224 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical optimization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082127</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algorithms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003487</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Algorithms</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000465</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optimisation mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algorithmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithms.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Numerical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matriser (matematik)</subfield><subfield code="2">sao</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimering.</subfield><subfield code="2">sao</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algoritmer.</subfield><subfield code="2">sao</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahony, R.</subfield><subfield code="q">(Robert),</subfield><subfield code="d">1967-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKv3P6Ry6YRfQrvFQmBMX</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2008002517</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sepulchre, R.</subfield><subfield code="q">(Rodolphe),</subfield><subfield code="d">1967-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjxxfgVJdvFxhfV68fH4q</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96106714</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Optimization algorithms on matrix manifolds (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGxTrRQbFkp9Cg7xmhg4tq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Absil, P.-A.</subfield><subfield code="t">Optimization algorithms on matrix manifolds.</subfield><subfield code="d">Princeton, N.J. ; Woodstock : Princeton University Press, ©2008</subfield><subfield code="z">9780691132983</subfield><subfield code="z">0691132984</subfield><subfield code="w">(DLC) 2007927538</subfield><subfield code="w">(OCoLC)174129993</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286720</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28057041</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">10561895</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL457711</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10312553</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">286720</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">215823</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3061257</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn438732716 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:52Z |
institution | BVB |
isbn | 9781400830244 1400830249 |
language | English |
oclc_num | 438732716 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 224 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Absil, P.-A., author. Optimization algorithms on matrix manifolds / P.-A. Absil, R. Mahony, R. Sepulchre. Princeton, N.J. ; Woodstock : Princeton University Press, ©2008. 1 online resource (xiv, 224 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differentia. Print version record. Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms. Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Algorithms https://id.nlm.nih.gov/mesh/D000465 Optimisation mathématique. Matrices. Algorithmes. algorithms. aat MATHEMATICS Numerical Analysis. bisacsh MATHEMATICS Applied. bisacsh Algorithms fast Mathematical optimization fast Matrices fast Matriser (matematik) sao Optimering. sao Algoritmer. sao Mahony, R. (Robert), 1967- author. https://id.oclc.org/worldcat/entity/E39PCjKv3P6Ry6YRfQrvFQmBMX http://id.loc.gov/authorities/names/nb2008002517 Sepulchre, R. (Rodolphe), 1967- author. https://id.oclc.org/worldcat/entity/E39PBJjxxfgVJdvFxhfV68fH4q http://id.loc.gov/authorities/names/n96106714 has work: Optimization algorithms on matrix manifolds (Text) https://id.oclc.org/worldcat/entity/E39PCGxTrRQbFkp9Cg7xmhg4tq https://id.oclc.org/worldcat/ontology/hasWork Print version: Absil, P.-A. Optimization algorithms on matrix manifolds. Princeton, N.J. ; Woodstock : Princeton University Press, ©2008 9780691132983 0691132984 (DLC) 2007927538 (OCoLC)174129993 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286720 Volltext |
spellingShingle | Absil, P.-A Mahony, R. (Robert), 1967- Sepulchre, R. (Rodolphe), 1967- Optimization algorithms on matrix manifolds / Introduction -- Motivation and applications -- Matrix manifolds : first-order geometry -- Line-search algorithms on manifolds -- Matrix manifolds : second-order geometry -- Newton's method -- Trust-region methods -- A constellation of superlinear algorithms. Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Algorithms https://id.nlm.nih.gov/mesh/D000465 Optimisation mathématique. Matrices. Algorithmes. algorithms. aat MATHEMATICS Numerical Analysis. bisacsh MATHEMATICS Applied. bisacsh Algorithms fast Mathematical optimization fast Matrices fast Matriser (matematik) sao Optimering. sao Algoritmer. sao |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082127 http://id.loc.gov/authorities/subjects/sh85082210 http://id.loc.gov/authorities/subjects/sh85003487 https://id.nlm.nih.gov/mesh/D000465 |
title | Optimization algorithms on matrix manifolds / |
title_auth | Optimization algorithms on matrix manifolds / |
title_exact_search | Optimization algorithms on matrix manifolds / |
title_full | Optimization algorithms on matrix manifolds / P.-A. Absil, R. Mahony, R. Sepulchre. |
title_fullStr | Optimization algorithms on matrix manifolds / P.-A. Absil, R. Mahony, R. Sepulchre. |
title_full_unstemmed | Optimization algorithms on matrix manifolds / P.-A. Absil, R. Mahony, R. Sepulchre. |
title_short | Optimization algorithms on matrix manifolds / |
title_sort | optimization algorithms on matrix manifolds |
topic | Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Algorithms. http://id.loc.gov/authorities/subjects/sh85003487 Algorithms https://id.nlm.nih.gov/mesh/D000465 Optimisation mathématique. Matrices. Algorithmes. algorithms. aat MATHEMATICS Numerical Analysis. bisacsh MATHEMATICS Applied. bisacsh Algorithms fast Mathematical optimization fast Matrices fast Matriser (matematik) sao Optimering. sao Algoritmer. sao |
topic_facet | Mathematical optimization. Matrices. Algorithms. Algorithms Optimisation mathématique. Algorithmes. algorithms. MATHEMATICS Numerical Analysis. MATHEMATICS Applied. Mathematical optimization Matrices Matriser (matematik) Optimering. Algoritmer. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286720 |
work_keys_str_mv | AT absilpa optimizationalgorithmsonmatrixmanifolds AT mahonyr optimizationalgorithmsonmatrixmanifolds AT sepulchrer optimizationalgorithmsonmatrixmanifolds |