Point processes and coincidences: contributions to the theory : with applications to statistical optics and optical communication
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Abschlussarbeit Buch |
Sprache: | English French |
Veröffentlicht: |
Nächst Neuendorf
Walter Warmuth Verlag
2017
|
Schriftenreihe: | Classical Lectures
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | 305 Seiten 21 cm, 397 g |
ISBN: | 9783944311036 3944311035 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044880799 | ||
003 | DE-604 | ||
005 | 20180417 | ||
007 | t | ||
008 | 180326s2017 gw m||| 00||| eng d | ||
015 | |a 17,N24 |2 dnb | ||
015 | |a 17,A42 |2 dnb | ||
015 | |a 17,H11 |2 dnb | ||
016 | 7 | |a 1133503438 |2 DE-101 | |
020 | |a 9783944311036 |c Broschur : EUR 41.95 (DE) (freier Preis), EUR 43.20 (AT) (freier Preis), CHF 46.15 (freier Preis) |9 978-3-944311-03-6 | ||
020 | |a 3944311035 |9 3-944311-03-5 | ||
024 | 3 | |a 9783944311036 | |
035 | |a (OCoLC)1031923366 | ||
035 | |a (DE-599)DNB1133503438 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 1 | |a eng |h fre | |
044 | |a gw |c XA-DE-BB | ||
049 | |a DE-384 | ||
082 | 0 | |a 519.23 |2 22/ger | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Macchi, Odile |d 1943- |e Verfasser |0 (DE-588)1136310541 |4 aut | |
240 | 1 | 0 | |a Macchi, Odile |
245 | 1 | 0 | |a Point processes and coincidences |b contributions to the theory : with applications to statistical optics and optical communication |c Odile Macchi ; augmented with a scholion by Suren Poghosyan and Hans Zessin ; English translation: Hans Zessin |
264 | 1 | |a Nächst Neuendorf |b Walter Warmuth Verlag |c 2017 | |
300 | |a 305 Seiten |c 21 cm, 397 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Classical Lectures | |
502 | |b Dissertation |c Université de Paris Sud |d 1972 |g unter dem Titel: Processus ponctuels et coincidences | ||
650 | 0 | 7 | |a Quantenoptik |0 (DE-588)4047990-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Punktprozess |0 (DE-588)4138173-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Punktprozess |0 (DE-588)4138173-7 |D s |
689 | 0 | 1 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Rafler, Mathias |0 (DE-588)1155326121 |4 edt | |
700 | 1 | |a Zessin, Hans |0 (DE-588)1136330453 |4 trl | |
700 | 1 | |a Poghosyan, Suren |0 (DE-588)1136343083 |4 oth | |
710 | 2 | |a Dr. Walter Warmuth (Firma) |0 (DE-588)1067142398 |4 pbl | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u http://d-nb.info/1133503438/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030275023&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030275023 |
Datensatz im Suchindex
_version_ | 1804178418794758144 |
---|---|
adam_text | CONTENTS
1 INTRODUCTION 15
1 SOME GENERAL RESULTS 25
2 POINT PROCESSES AND COINCIDENCES 27
2.1 IN TRO D U C TIO N
.............................................................................................27
2.2 REGULAR PROCESSES AND COINCIDENCE D E N S IT IE S
..........................
28
2.2.1 ASSUMPTIONS FOR ORDERLY PROCESSES
............................................
28
2.2.2 COINCIDENCE AND EXCLUSION PROBABILITIES
...................................
30
2.3 SHOT NOISE P RO C E S S E S
...........................................................................34
2.3.1
DEFINITION.........................................................................................34
2.3.2 CHARACTERISTIC FUNCTION OF ORDER Q
............................................
35
2.3.3 JOINT DISTRIBUTION OF COUNTING V A RIA B LE S
...................................
37
2.4 EXCLUSION D E N S ITIE S
..........................
41
2.4.1 EXCLUSION (PROBABILITY)
DENSITIES.................................................41
2.4.2 DISTANCES BETWEEN INSTANTS AND IMPULSES
...............................
42
2.4.3 INTERVALS BETWEEN NEIGHBOURING IM PULSES
...............................
43
2.4.4 SURVIVALTIME AND
LIFETIME..............................................................
44
2.5 S TA TIO N A R ITY
.............................................................................................
45
2.6 OPERATIONS ON POINT P RO C E S S E S
..........................................................47
2.6.1 SUPERPOSITION
................................................................................
47
2.6.2 RANDOM
THINNING............................................................................49
2.7 E X A M P LE S
..................................................................................................49
2.7.1 THE POISSON P RO C E S S
................................................................... 49
2.7.2 DETECTION OF A MONO-MODE FIELD WITH N PHOTONS
......................
51
2.A ADDITIONAL P RO O FS
....................................................................................54
LAWS OF REGULAR POINT PROCESSES 57
3.1 THE SPACE OF RE A LIZ A TIO N S
...................................................................57
3.1.1 SYMMETRIC SETS IN
3N.................................................................. 58
3.2 E V E N T S
......................................................................................................
58
3.2.1 THE COUNTING A LG E B RA
................................................................... 59
3.2.2 DISTRIBUTIONS OF P ELEM ENTS
..........................................................
62
3.3 PROBABILITY L A W S
....................................................................................
67
3.3.1 EXCLUSION
PROBABILITIES...................................................................
68
3.3.2 SYMMETRY OF L A W S
.......................................................................
69
3.3.3 COINCIDENCE P RO B A B ILITIE S
..........................................................
71
3.3.4 PROBABILITIES OF CYLINDERS IN AND
....................................74
3.3.5 MOMENTS AND FACTORIAL MOMENTS
.................................................
75
3.4 REGULAR POINT
PROCESSES.......................................................................
80
3.4.1 DENSITIES OF EXCLUSION P RO B A B ILITIE S
........................................
80
3.4.2 COINCIDENCE PROBABILITY D E N S ITIE S
.............................................82
3.4.3 CONSTRUCTION OF POINT PROCESSES
.................................................
67
3.5 A-FINITE POINT P RO C E S S E S
.......................................................................
91
3.5.1 EXCLUSION
PROBABILITIES...................................................................
92
3.5.2 COINCIDENCE
DENSITIES...................................................................
93
3.6 CHARACTERISTIC FU N C TIO N A LS
...................................................................96
II POINT PROCESS MODELS 101
4 COX PROCESSES AND PHOTOELECTRONS 103
4.1 IN TRO D U C TIO N
...........................................................................................
103
4.2 DETECTION OF AN OPTICAL F I E L D
............................................................
104
4.3 THE COX P RO C E S S
..................................................................................
106
4.3.1
DEFINITION.......................................................................................106
4.3.2 CHARACTERISTIC AND GENERATING FU N C TIO N
.................................
108
4.3.3 EXCLUSION PROBABILITIES
................................................................
110
4.3.4
STATIONARITY..................................................................................
112
4.3.5 SUPERPOSITION AND
THINNING........................................................112
4.4 THERM AL L I G H T
.......................................................................................113
4.4.1
INTRODUCTION..................................................................................
113
4.4.2 THE GENERATING FUNCTION OF IM PU LSES
......................................
114
4.4.3 THE METHOD OF COINCIDENCES
...................................................
115
4.4.4 EXCLUSION
PROBABILITIES.................................................................116
4.4.5 EXAMPLE: THERMAL LIGHT WITH LORENTZ-SPECTRUM
....................
119
4.5 THE DOUBLY STOCHASTIC POISSON P R O C E S S
......................................
122
4.5.1 JOINT
LAWS.......................................................................................122
4.5.2
COINCIDENCES..............................................................................123
4.6 THE GAUSS-POISSON P RO C E S S
............................................................
125
4.6.1 M O TIV A TIO N
..................................................................................
125
4.6.2 THE CHARACTERISTIC FUN CTIO N AL
...................................................
125
4.6.3
COINCIDENCES..............................................................................129
4.6.4 EXCLUSION PROBABILITIES AND AN EXISTENCE THEOREM. . . . 130
4.6.5 THE STATIONARY
CASE.....................................................................
132
4.6.6 AN
EXAMPLE..................................................................................
133
4.6.7 PROOF OF THEOREM 4 . 4
................................................................
134
4 .A PROOF OF FORMULA ( 4 . 6 6 )
.....................................................................135
5 RENEWAL PROCESSES 139
5.1 D E FIN ITIO N
................................................................................................139
5.2 EXCLUSION PROBABILITIES
.........................................................................
140
5.3 JOINT COUNTING LA W S
..............................................................................141
6 FERMIONS IN A CHAOTIC STATE 145
6.1 IN TRO D U C TIO N
............................................................................................145
6.2 CHARACTERIZATION OF FERM
IONS.............................................................146
6.2.1
GENERALITIES...................................................................................146
6.2.2 GENERATING FUNCTION OF THE COUNTING V A R IA B LE S
....................
147
6.2.3 NECESSARY AND SUFFICIENT CONDITIONS FOR G TO BE A GENER
ATING FU N CTIO N
..............................................................................
150
6.2.4 A BASIC
THEOREM..........................................................................155
6.3 FERMIONS IN A CHAOTIC STATE: PHYSICAL POINT OF VIEW .... 162
6.3.1
INTRODUCTION...................................................................................162
6.3.2 THE M O D E S
...................................................................................162
6.3.3 DENSITY MATRICES. EMISSION AND DETECTION PROCESSES . .163
6.3.4 D
ISCUSSION...................................................................................165
6.4 AN ANALOGY BETWEEN CHAOTIC BEAM S
OF FERMIONS AND OF B O S O N S
................................................................. 168
6.5 AN E X A M P LE
............................................................................................170
6.5.1
INTRODUCTION...................................................................................170
6.5.2 IS A GENERALIZED RENEWAL PROCESS
......................................
170
6.5.3 LORENTZIAN ASSUMPTIONS
............................................................
172
III OPTICAL COMMUNICATIONS 175
7 WEAK OPTICAL SIGNALS 177
7.1 IN TRO D U C TIO N
............................................................................................177
7.2 ESTIMATION OF A MODULATED OPTICAL S IG N A L
......................................
178
7.2.1 THE P R O B LE M
..............................................................................
178
7.2.2 GENERAL R E S U LT S
..........................................................................179
7.2.3 THE CASE OF WEAK N O IS E
.............................................................182
7.2.4 AN EXAM
PLE...................................................................................184
7.3 ESTIMATION OF THE INTENSITY OF THERM AL L I G H T
..................................
188
7.4 LINEAR ES TIM A TIO N
...................................................................................
193
7.4.1 INTERNAL NOISE OF THE D ETECTO
R....................................................194
7.4.2 NOISE FROM PARASITICAL RADIATION
...............................................
196
7.5 DETECTION P RO B LE M S
..............................................................................199
7.5.1 THERMAL NOISE OF THE
DETECTOR.................................................200
7.5.2 PARASITICAL ENVIRONMENTAL RADIATION
..........................................
203
7.5.3 FINAL REM ARKS
...................................
205
7.6 C O N C LU S IO N S
...........................................................................................206
7 .A SOM E GENERAL PROPERTIES OF THE ESTIMATORS
....................................
207
7.A.1 EXPECTATION OF
AQ{TN}
................................................................
207
7.A.2 VARIANCE OF
AQ{TN)
.........................................................................208
7.A.3 PROOF OF FORMULA (7.19)
............................................................209
7.B THE R E S O LV E N T
.....................................................................................
210
IV LATER MATHEMATICAL DEVELOPMENTS 215
8 QUANTUM-CLASSICAL PROCESSES 217
8.1 IN TRO D U C TIO N
...........................................................................................218
8.1.1 SOME MATHEMATICAL T O O L S
.......................................................
223
8.2 A GENERAL CONSTRUCTION S C H E M E
.......................................................
225
8
.
2.1
NEHRING*S REPRESENTATION OF 3
L
...............................................227
8.3 A SPECIAL CLASS OF FUNCTIONALS L
.......................................................
229
8.3.1 GLOBAL ASSUMPTIONS ON THE
POTENTIALS......................................234
8.3.2 INFINITELY EXTENDED
PROCESSES...................................................237
8.3.3 EXPLICIT CONDITIONS FOR THE P O TE N TIA LS
......................................239
8.4 THE CLUSTER E Q U A T IO N
.........................................................................
240
8.4.1 A GENERAL PRINCIPLE IMPLYING A COX STRUCTURE
........................
242
8.5 FACTORIAL MOMENT M E A S U R E S
............................................................244
8.6 A REPRESENTATION OF THE MODIFIED LAPLACE TRANSFORM .... 246
9 QUANTUM PROCESSES 247
9.1 CONSTRUCTION OF QUANTUM
PROCESSES...............................................247
9.1.1 A CONSTRUCTION METHOD INDUCING QUANTUM INTERACTIONS . . 249
9.2 IMMANANTAL P R O C E S S E S
.....................................................................250
9.3 COX P RO C E S S E S
......................................................................................
253
9.4 SUPPORT P RO P E R TIE S
..............................................................................254
9.5 GIBBSIAN C H A RA C TE
R..............................................................................
255
9.6 INVARIANCE PROPERTIES AND LAWS OF LARGE N U M B E R S
....................
256
9 .7 MIXING OF QUANTUM P R O C E S S E S
........................................................259
9.8 A CENTRAL LIMIT THEOREM FOR QUANTUM P RO C E S S E S
.........................262
10 EXAMPLES OF QUANTUM PROCESSES 265
10.1 QUANTUM COX P R O C E S S E S
.................................................................267
10.1.1 THERMAL LIGHT. THE PHOTON PROCESS
..........................................
267
10.2 QUANTUM POLYA P RO
CESSES.................................................................269
10.2.1 PE IS A PAPANGELOU P RO C E S S
...................................................
270
10.3 IDEAL BOSONS AND F E R M IO N S
............................................................
272
10.3.1 LAWS OF LARGE NUMBERS AND CENTRAL LIMIT THEOREMS. . . .273
10.3.2 CLUSTERING REPRESENTATION OF 5+
...............................................
274
10.4 QUANTUM RENEWAL P RO CESSES
............................................................
275
10.5 GINIBRE P R O C E S S E S
..............................................................................
276
10.5.1 THE EXPONENTIAL KERNEL IS A QUANTUM INTERACTION . . . .276
10.5.2 C O N STRU CTIO N
..............................................................................
278
10.5.3 GIBBSIAN AND COXIAN CH A RA C TE
R............................................... 279
10.5.4 ASYMPTOTIC
BEHAVIOUR.................................................................279
11 PRESSURE OF QUANTUM SYSTEMS 283
11.1 THE P RO B LE M
............................................................................................283
11.1.1 A
DECOMPOSITION..........................................................................284
11.1.2 THE SECOND TERM
..........................................................................285
11.2 E X A M P LE S
................................................................................................286
11.2.1 POLYA
PROCESSES..........................................................................286
11.2.2 GINIBRE P RO C E S S E S
.....................................................................
286
11.2.3 IDEAL BOSONS AND FERMIONS IN THE COMPLEX PLANE .... 238
BIBLIOGRAPHY 291
|
any_adam_object | 1 |
author | Macchi, Odile 1943- |
author2 | Rafler, Mathias Zessin, Hans |
author2_role | edt trl |
author2_variant | m r mr h z hz |
author_GND | (DE-588)1136310541 (DE-588)1155326121 (DE-588)1136330453 (DE-588)1136343083 |
author_facet | Macchi, Odile 1943- Rafler, Mathias Zessin, Hans |
author_role | aut |
author_sort | Macchi, Odile 1943- |
author_variant | o m om |
building | Verbundindex |
bvnumber | BV044880799 |
classification_rvk | SK 820 |
ctrlnum | (OCoLC)1031923366 (DE-599)DNB1133503438 |
dewey-full | 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.23 |
dewey-search | 519.23 |
dewey-sort | 3519.23 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02465nam a2200565 c 4500</leader><controlfield tag="001">BV044880799</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180417 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">180326s2017 gw m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,N24</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,A42</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">17,H11</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1133503438</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783944311036</subfield><subfield code="c">Broschur : EUR 41.95 (DE) (freier Preis), EUR 43.20 (AT) (freier Preis), CHF 46.15 (freier Preis)</subfield><subfield code="9">978-3-944311-03-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3944311035</subfield><subfield code="9">3-944311-03-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783944311036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1031923366</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1133503438</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Macchi, Odile</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1136310541</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Macchi, Odile</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Point processes and coincidences</subfield><subfield code="b">contributions to the theory : with applications to statistical optics and optical communication</subfield><subfield code="c">Odile Macchi ; augmented with a scholion by Suren Poghosyan and Hans Zessin ; English translation: Hans Zessin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Nächst Neuendorf</subfield><subfield code="b">Walter Warmuth Verlag</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">305 Seiten</subfield><subfield code="c">21 cm, 397 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Classical Lectures</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Université de Paris Sud</subfield><subfield code="d">1972</subfield><subfield code="g">unter dem Titel: Processus ponctuels et coincidences</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Punktprozess</subfield><subfield code="0">(DE-588)4138173-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Punktprozess</subfield><subfield code="0">(DE-588)4138173-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rafler, Mathias</subfield><subfield code="0">(DE-588)1155326121</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zessin, Hans</subfield><subfield code="0">(DE-588)1136330453</subfield><subfield code="4">trl</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poghosyan, Suren</subfield><subfield code="0">(DE-588)1136343083</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Dr. Walter Warmuth (Firma)</subfield><subfield code="0">(DE-588)1067142398</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://d-nb.info/1133503438/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030275023&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030275023</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044880799 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:03:40Z |
institution | BVB |
institution_GND | (DE-588)1067142398 |
isbn | 9783944311036 3944311035 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030275023 |
oclc_num | 1031923366 |
open_access_boolean | |
owner | DE-384 |
owner_facet | DE-384 |
physical | 305 Seiten 21 cm, 397 g |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Walter Warmuth Verlag |
record_format | marc |
series2 | Classical Lectures |
spelling | Macchi, Odile 1943- Verfasser (DE-588)1136310541 aut Macchi, Odile Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication Odile Macchi ; augmented with a scholion by Suren Poghosyan and Hans Zessin ; English translation: Hans Zessin Nächst Neuendorf Walter Warmuth Verlag 2017 305 Seiten 21 cm, 397 g txt rdacontent n rdamedia nc rdacarrier Classical Lectures Dissertation Université de Paris Sud 1972 unter dem Titel: Processus ponctuels et coincidences Quantenoptik (DE-588)4047990-0 gnd rswk-swf Punktprozess (DE-588)4138173-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Punktprozess (DE-588)4138173-7 s Quantenoptik (DE-588)4047990-0 s DE-604 Rafler, Mathias (DE-588)1155326121 edt Zessin, Hans (DE-588)1136330453 trl Poghosyan, Suren (DE-588)1136343083 oth Dr. Walter Warmuth (Firma) (DE-588)1067142398 pbl B:DE-101 application/pdf http://d-nb.info/1133503438/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030275023&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Macchi, Odile 1943- Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication Quantenoptik (DE-588)4047990-0 gnd Punktprozess (DE-588)4138173-7 gnd |
subject_GND | (DE-588)4047990-0 (DE-588)4138173-7 (DE-588)4113937-9 |
title | Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication |
title_alt | Macchi, Odile |
title_auth | Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication |
title_exact_search | Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication |
title_full | Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication Odile Macchi ; augmented with a scholion by Suren Poghosyan and Hans Zessin ; English translation: Hans Zessin |
title_fullStr | Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication Odile Macchi ; augmented with a scholion by Suren Poghosyan and Hans Zessin ; English translation: Hans Zessin |
title_full_unstemmed | Point processes and coincidences contributions to the theory : with applications to statistical optics and optical communication Odile Macchi ; augmented with a scholion by Suren Poghosyan and Hans Zessin ; English translation: Hans Zessin |
title_short | Point processes and coincidences |
title_sort | point processes and coincidences contributions to the theory with applications to statistical optics and optical communication |
title_sub | contributions to the theory : with applications to statistical optics and optical communication |
topic | Quantenoptik (DE-588)4047990-0 gnd Punktprozess (DE-588)4138173-7 gnd |
topic_facet | Quantenoptik Punktprozess Hochschulschrift |
url | http://d-nb.info/1133503438/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030275023&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT macchiodile macchiodile AT raflermathias macchiodile AT zessinhans macchiodile AT poghosyansuren macchiodile AT drwalterwarmuthfirma macchiodile AT macchiodile pointprocessesandcoincidencescontributionstothetheorywithapplicationstostatisticalopticsandopticalcommunication AT raflermathias pointprocessesandcoincidencescontributionstothetheorywithapplicationstostatisticalopticsandopticalcommunication AT zessinhans pointprocessesandcoincidencescontributionstothetheorywithapplicationstostatisticalopticsandopticalcommunication AT poghosyansuren pointprocessesandcoincidencescontributionstothetheorywithapplicationstostatisticalopticsandopticalcommunication AT drwalterwarmuthfirma pointprocessesandcoincidencescontributionstothetheorywithapplicationstostatisticalopticsandopticalcommunication |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis