Renormalisation in area-preserving maps:
This book is adapted and revised from the author's seminal PhD thesis, in which two forms of asymptotically universal structure were presented and explained for area-preserving maps. Area-preserving maps are the discrete-time analogue of two degree-of-freedom Hamiltonian systems. How they work...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c1993
|
Schriftenreihe: | Advanced series in nonlinear dynamics
v. 6 |
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book is adapted and revised from the author's seminal PhD thesis, in which two forms of asymptotically universal structure were presented and explained for area-preserving maps. Area-preserving maps are the discrete-time analogue of two degree-of-freedom Hamiltonian systems. How they work and much of their dynamics are described in this book. The asymptotically universal structure is found on small scales in phase-space and long time-scales. The key to understanding it is renormalisation, that is, looking at a system on successively smaller phase-space and longer time scales. Having presented this idea, the author briefly surveys the use of the idea of renormalisation in physics. The renormalisation picture is then presented as the key to understanding the transition from regular to chaotic motion in area-preserving maps. Although written ten years ago, the subject matter continues to interest many today. This updated version will be useful to both researchers and students |
Beschreibung: | xix, 304 p. ill |
ISBN: | 9789814354462 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV044638536 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789814354462 |c electronic bk. |9 978-981-4354-46-2 | ||
024 | 7 | |a 10.1142/2001 |2 doi | |
035 | |a (ZDB-124-WOP)00005409 | ||
035 | |a (OCoLC)1005230829 | ||
035 | |a (DE-599)BVBBV044638536 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 514.72 |2 22 | |
100 | 1 | |a MacKay, R. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Renormalisation in area-preserving maps |c R.S. MacKay |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c1993 | |
300 | |a xix, 304 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced series in nonlinear dynamics |v v. 6 | |
520 | |a This book is adapted and revised from the author's seminal PhD thesis, in which two forms of asymptotically universal structure were presented and explained for area-preserving maps. Area-preserving maps are the discrete-time analogue of two degree-of-freedom Hamiltonian systems. How they work and much of their dynamics are described in this book. The asymptotically universal structure is found on small scales in phase-space and long time-scales. The key to understanding it is renormalisation, that is, looking at a system on successively smaller phase-space and longer time scales. Having presented this idea, the author briefly surveys the use of the idea of renormalisation in physics. The renormalisation picture is then presented as the key to understanding the transition from regular to chaotic motion in area-preserving maps. Although written ten years ago, the subject matter continues to interest many today. This updated version will be useful to both researchers and students | ||
650 | 4 | |a Differentiable mappings | |
650 | 4 | |a Renormalization (Physics) | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 0 | 7 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810213718 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810213719 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/2001#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030036510 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/2001#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178055298547712 |
---|---|
any_adam_object | |
author | MacKay, R. S. |
author_facet | MacKay, R. S. |
author_role | aut |
author_sort | MacKay, R. S. |
author_variant | r s m rs rsm |
building | Verbundindex |
bvnumber | BV044638536 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00005409 (OCoLC)1005230829 (DE-599)BVBBV044638536 |
dewey-full | 514.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.72 |
dewey-search | 514.72 |
dewey-sort | 3514.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02990nmm a2200505zcb4500</leader><controlfield tag="001">BV044638536</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814354462</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4354-46-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/2001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00005409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1005230829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044638536</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">MacKay, R. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalisation in area-preserving maps</subfield><subfield code="c">R.S. MacKay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 304 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced series in nonlinear dynamics</subfield><subfield code="v">v. 6</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is adapted and revised from the author's seminal PhD thesis, in which two forms of asymptotically universal structure were presented and explained for area-preserving maps. Area-preserving maps are the discrete-time analogue of two degree-of-freedom Hamiltonian systems. How they work and much of their dynamics are described in this book. The asymptotically universal structure is found on small scales in phase-space and long time-scales. The key to understanding it is renormalisation, that is, looking at a system on successively smaller phase-space and longer time scales. Having presented this idea, the author briefly surveys the use of the idea of renormalisation in physics. The renormalisation picture is then presented as the key to understanding the transition from regular to chaotic motion in area-preserving maps. Although written ten years ago, the subject matter continues to interest many today. This updated version will be useful to both researchers and students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable mappings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Renormalization (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810213718</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810213719</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2001#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030036510</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/2001#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV044638536 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:53Z |
institution | BVB |
isbn | 9789814354462 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030036510 |
oclc_num | 1005230829 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xix, 304 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Advanced series in nonlinear dynamics |
spelling | MacKay, R. S. Verfasser aut Renormalisation in area-preserving maps R.S. MacKay Singapore World Scientific Pub. Co. c1993 xix, 304 p. ill txt rdacontent c rdamedia cr rdacarrier Advanced series in nonlinear dynamics v. 6 This book is adapted and revised from the author's seminal PhD thesis, in which two forms of asymptotically universal structure were presented and explained for area-preserving maps. Area-preserving maps are the discrete-time analogue of two degree-of-freedom Hamiltonian systems. How they work and much of their dynamics are described in this book. The asymptotically universal structure is found on small scales in phase-space and long time-scales. The key to understanding it is renormalisation, that is, looking at a system on successively smaller phase-space and longer time scales. Having presented this idea, the author briefly surveys the use of the idea of renormalisation in physics. The renormalisation picture is then presented as the key to understanding the transition from regular to chaotic motion in area-preserving maps. Although written ten years ago, the subject matter continues to interest many today. This updated version will be useful to both researchers and students Differentiable mappings Renormalization (Physics) Differentiable dynamical systems Abbildung Mathematik (DE-588)4000044-8 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Hamiltonsches System (DE-588)4139943-2 s Abbildung Mathematik (DE-588)4000044-8 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 9789810213718 Erscheint auch als Druck-Ausgabe 9810213719 http://www.worldscientific.com/worldscibooks/10.1142/2001#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | MacKay, R. S. Renormalisation in area-preserving maps Differentiable mappings Renormalization (Physics) Differentiable dynamical systems Abbildung Mathematik (DE-588)4000044-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4000044-8 (DE-588)4139943-2 (DE-588)4113937-9 |
title | Renormalisation in area-preserving maps |
title_auth | Renormalisation in area-preserving maps |
title_exact_search | Renormalisation in area-preserving maps |
title_full | Renormalisation in area-preserving maps R.S. MacKay |
title_fullStr | Renormalisation in area-preserving maps R.S. MacKay |
title_full_unstemmed | Renormalisation in area-preserving maps R.S. MacKay |
title_short | Renormalisation in area-preserving maps |
title_sort | renormalisation in area preserving maps |
topic | Differentiable mappings Renormalization (Physics) Differentiable dynamical systems Abbildung Mathematik (DE-588)4000044-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Differentiable mappings Renormalization (Physics) Differentiable dynamical systems Abbildung Mathematik Hamiltonsches System Hochschulschrift |
url | http://www.worldscientific.com/worldscibooks/10.1142/2001#t=toc |
work_keys_str_mv | AT mackayrs renormalisationinareapreservingmaps |