Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data:
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg
2022
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 1 Online-Ressource |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049085847 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 230801s2022 gw |||| o||u| ||||||eng d | ||
016 | 7 | |a 1273164016 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-235186 |2 urn | |
035 | |a (OCoLC)1392151977 | ||
035 | |a (DE-599)DNB1273164016 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-29 | ||
050 | 0 | |a Q1-390 |2 lcc | |
084 | |8 2\p |a 610 |2 23sdnb | ||
084 | |8 1\p |a 616.075 |2 23ksdnb | ||
100 | 1 | |a Packhäuser, Kai |e Verfasser |4 aut | |
245 | 1 | 0 | |a Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |c Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, Andreas Maier |
264 | 1 | |a Erlangen ; Nürnberg |b Friedrich-Alexander-Universität Erlangen-Nürnberg |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
653 | |a Science, Humanities and Social Sciences, multidisciplinary. | ||
653 | |a Science, multidisciplinary. | ||
700 | 1 | |a Gündel, Sebastian |e Verfasser |4 aut | |
700 | 1 | |a Münster, Nicolas |e Verfasser |4 aut | |
700 | 1 | |a Syben, Christopher |e Verfasser |4 aut | |
700 | 1 | |a Christlein, Vincent |e Verfasser |4 aut | |
700 | 1 | |a Maier, Andreas |e Verfasser |4 aut | |
787 | 0 | 8 | |i Sonderdruck aus |t Scientific Reports |g Vol. 12 (2022) |o 10.1038/s41598-022-19045-3 |
856 | 4 | 0 | |u https://open.fau.de/handle/openfau/23518 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-235186 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034347685 | ||
883 | 0 | |8 1\p |a emakn |c 0,17590 |d 20221120 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,50547 |d 20221120 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20221119 |q DE-101 |u https://d-nb.info/provenance/plan#npi |
Datensatz im Suchindex
_version_ | 1804185418501980160 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Packhäuser, Kai Gündel, Sebastian Münster, Nicolas Syben, Christopher Christlein, Vincent Maier, Andreas |
author_facet | Packhäuser, Kai Gündel, Sebastian Münster, Nicolas Syben, Christopher Christlein, Vincent Maier, Andreas |
author_role | aut aut aut aut aut aut |
author_sort | Packhäuser, Kai |
author_variant | k p kp s g sg n m nm c s cs v c vc a m am |
building | Verbundindex |
bvnumber | BV049085847 |
callnumber-first | Q - Science |
callnumber-label | Q1-390 |
callnumber-raw | Q1-390 |
callnumber-search | Q1-390 |
callnumber-sort | Q 11 3390 |
callnumber-subject | Q - General Science |
collection | ebook |
ctrlnum | (OCoLC)1392151977 (DE-599)DNB1273164016 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02065nmm a2200481zc 4500</leader><controlfield tag="001">BV049085847</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230801s2022 gw |||| o||u| ||||||eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1273164016</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-235186</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1392151977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1273164016</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q1-390</subfield><subfield code="2">lcc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">616.075</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Packhäuser, Kai</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data</subfield><subfield code="c">Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, Andreas Maier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="b">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Science, Humanities and Social Sciences, multidisciplinary.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Science, multidisciplinary.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gündel, Sebastian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Münster, Nicolas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Syben, Christopher</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Christlein, Vincent</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maier, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="787" ind1="0" ind2="8"><subfield code="i">Sonderdruck aus</subfield><subfield code="t">Scientific Reports</subfield><subfield code="g">Vol. 12 (2022)</subfield><subfield code="o">10.1038/s41598-022-19045-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://open.fau.de/handle/openfau/23518</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-235186</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034347685</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,17590</subfield><subfield code="d">20221120</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,50547</subfield><subfield code="d">20221120</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20221119</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield></record></collection> |
id | DE-604.BV049085847 |
illustrated | Not Illustrated |
index_date | 2024-07-03T22:28:36Z |
indexdate | 2024-07-10T09:54:55Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034347685 |
oclc_num | 1392151977 |
open_access_boolean | 1 |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Friedrich-Alexander-Universität Erlangen-Nürnberg |
record_format | marc |
spelling | Packhäuser, Kai Verfasser aut Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, Andreas Maier Erlangen ; Nürnberg Friedrich-Alexander-Universität Erlangen-Nürnberg 2022 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Science, Humanities and Social Sciences, multidisciplinary. Science, multidisciplinary. Gündel, Sebastian Verfasser aut Münster, Nicolas Verfasser aut Syben, Christopher Verfasser aut Christlein, Vincent Verfasser aut Maier, Andreas Verfasser aut Sonderdruck aus Scientific Reports Vol. 12 (2022) 10.1038/s41598-022-19045-3 https://open.fau.de/handle/openfau/23518 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-235186 Resolving-System kostenfrei Volltext 1\p emakn 0,17590 20221120 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,50547 20221120 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20221119 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Packhäuser, Kai Gündel, Sebastian Münster, Nicolas Syben, Christopher Christlein, Vincent Maier, Andreas Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |
title | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |
title_auth | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |
title_exact_search | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |
title_exact_search_txtP | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |
title_full | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, Andreas Maier |
title_fullStr | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, Andreas Maier |
title_full_unstemmed | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data Kai Packhäuser, Sebastian Gündel, Nicolas Münster, Christopher Syben, Vincent Christlein, Andreas Maier |
title_short | Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data |
title_sort | deep learning based patient re identification is able to exploit the biometric nature of medical chest x ray data |
url | https://open.fau.de/handle/openfau/23518 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-235186 |
work_keys_str_mv | AT packhauserkai deeplearningbasedpatientreidentificationisabletoexploitthebiometricnatureofmedicalchestxraydata AT gundelsebastian deeplearningbasedpatientreidentificationisabletoexploitthebiometricnatureofmedicalchestxraydata AT munsternicolas deeplearningbasedpatientreidentificationisabletoexploitthebiometricnatureofmedicalchestxraydata AT sybenchristopher deeplearningbasedpatientreidentificationisabletoexploitthebiometricnatureofmedicalchestxraydata AT christleinvincent deeplearningbasedpatientreidentificationisabletoexploitthebiometricnatureofmedicalchestxraydata AT maierandreas deeplearningbasedpatientreidentificationisabletoexploitthebiometricnatureofmedicalchestxraydata |