On the complexity of partitioning an assembly:
Abstract: "We consider the following problem that arises in assembly planning: given an assembly, identify a subassembly that can be removed as a rigid object without disturbing the rest of the assembly. This is called the assembly partitioning problem. Polynomial-time solutions have been prese...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stanford, Calif.
1992
|
Schriftenreihe: | Stanford University / Computer Science Department: Report STAN CS
1458 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We consider the following problem that arises in assembly planning: given an assembly, identify a subassembly that can be removed as a rigid object without disturbing the rest of the assembly. This is called the assembly partitioning problem. Polynomial-time solutions have been presented when the motions allowed for the separation are of certain restricted types. We show that for assemblies of polyhedra, the partitioning problem for arbitrary sequences of translations is NP- complete. The reduction is from 3-SAT The proof applies equally when each part in the assembly is limited to a constant number of vertices; when rotations are allowed; when both subassemblies are required to be connected; and for assemblies in the plane where each part may consist of a number of unconnected polygons. |
Beschreibung: | 14 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV009005859 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 940206s1992 |||| 00||| eng d | ||
035 | |a (OCoLC)28470722 | ||
035 | |a (DE-599)BVBBV009005859 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-91G | ||
100 | 1 | |a Wilson, Randall H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a On the complexity of partitioning an assembly |c by R. H. Wilson ; J.-C. Latombe ; T. Lozano-Perez |
264 | 1 | |a Stanford, Calif. |c 1992 | |
300 | |a 14 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Stanford University / Computer Science Department: Report STAN CS |v 1458 | |
520 | 3 | |a Abstract: "We consider the following problem that arises in assembly planning: given an assembly, identify a subassembly that can be removed as a rigid object without disturbing the rest of the assembly. This is called the assembly partitioning problem. Polynomial-time solutions have been presented when the motions allowed for the separation are of certain restricted types. We show that for assemblies of polyhedra, the partitioning problem for arbitrary sequences of translations is NP- complete. The reduction is from 3-SAT | |
520 | 3 | |a The proof applies equally when each part in the assembly is limited to a constant number of vertices; when rotations are allowed; when both subassemblies are required to be connected; and for assemblies in the plane where each part may consist of a number of unconnected polygons. | |
650 | 4 | |a Computational geometry | |
700 | 1 | |a Latombe, Jean-Claude |e Verfasser |4 aut | |
700 | 1 | |a Lozano-Pérez, Tomás |e Verfasser |4 aut | |
810 | 2 | |a Computer Science Department: Report STAN CS |t Stanford University |v 1458 |w (DE-604)BV008928280 |9 1458 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-005952938 |
Datensatz im Suchindex
_version_ | 1804123352754814976 |
---|---|
any_adam_object | |
author | Wilson, Randall H. Latombe, Jean-Claude Lozano-Pérez, Tomás |
author_facet | Wilson, Randall H. Latombe, Jean-Claude Lozano-Pérez, Tomás |
author_role | aut aut aut |
author_sort | Wilson, Randall H. |
author_variant | r h w rh rhw j c l jcl t l p tlp |
building | Verbundindex |
bvnumber | BV009005859 |
ctrlnum | (OCoLC)28470722 (DE-599)BVBBV009005859 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01882nam a2200325 cb4500</leader><controlfield tag="001">BV009005859</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940206s1992 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)28470722</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009005859</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wilson, Randall H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the complexity of partitioning an assembly</subfield><subfield code="c">by R. H. Wilson ; J.-C. Latombe ; T. Lozano-Perez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stanford, Calif.</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Stanford University / Computer Science Department: Report STAN CS</subfield><subfield code="v">1458</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We consider the following problem that arises in assembly planning: given an assembly, identify a subassembly that can be removed as a rigid object without disturbing the rest of the assembly. This is called the assembly partitioning problem. Polynomial-time solutions have been presented when the motions allowed for the separation are of certain restricted types. We show that for assemblies of polyhedra, the partitioning problem for arbitrary sequences of translations is NP- complete. The reduction is from 3-SAT</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The proof applies equally when each part in the assembly is limited to a constant number of vertices; when rotations are allowed; when both subassemblies are required to be connected; and for assemblies in the plane where each part may consist of a number of unconnected polygons.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational geometry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Latombe, Jean-Claude</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lozano-Pérez, Tomás</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Computer Science Department: Report STAN CS</subfield><subfield code="t">Stanford University</subfield><subfield code="v">1458</subfield><subfield code="w">(DE-604)BV008928280</subfield><subfield code="9">1458</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005952938</subfield></datafield></record></collection> |
id | DE-604.BV009005859 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T17:28:25Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005952938 |
oclc_num | 28470722 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM |
owner_facet | DE-29T DE-91G DE-BY-TUM |
physical | 14 S. |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
record_format | marc |
series2 | Stanford University / Computer Science Department: Report STAN CS |
spelling | Wilson, Randall H. Verfasser aut On the complexity of partitioning an assembly by R. H. Wilson ; J.-C. Latombe ; T. Lozano-Perez Stanford, Calif. 1992 14 S. txt rdacontent n rdamedia nc rdacarrier Stanford University / Computer Science Department: Report STAN CS 1458 Abstract: "We consider the following problem that arises in assembly planning: given an assembly, identify a subassembly that can be removed as a rigid object without disturbing the rest of the assembly. This is called the assembly partitioning problem. Polynomial-time solutions have been presented when the motions allowed for the separation are of certain restricted types. We show that for assemblies of polyhedra, the partitioning problem for arbitrary sequences of translations is NP- complete. The reduction is from 3-SAT The proof applies equally when each part in the assembly is limited to a constant number of vertices; when rotations are allowed; when both subassemblies are required to be connected; and for assemblies in the plane where each part may consist of a number of unconnected polygons. Computational geometry Latombe, Jean-Claude Verfasser aut Lozano-Pérez, Tomás Verfasser aut Computer Science Department: Report STAN CS Stanford University 1458 (DE-604)BV008928280 1458 |
spellingShingle | Wilson, Randall H. Latombe, Jean-Claude Lozano-Pérez, Tomás On the complexity of partitioning an assembly Computational geometry |
title | On the complexity of partitioning an assembly |
title_auth | On the complexity of partitioning an assembly |
title_exact_search | On the complexity of partitioning an assembly |
title_full | On the complexity of partitioning an assembly by R. H. Wilson ; J.-C. Latombe ; T. Lozano-Perez |
title_fullStr | On the complexity of partitioning an assembly by R. H. Wilson ; J.-C. Latombe ; T. Lozano-Perez |
title_full_unstemmed | On the complexity of partitioning an assembly by R. H. Wilson ; J.-C. Latombe ; T. Lozano-Perez |
title_short | On the complexity of partitioning an assembly |
title_sort | on the complexity of partitioning an assembly |
topic | Computational geometry |
topic_facet | Computational geometry |
volume_link | (DE-604)BV008928280 |
work_keys_str_mv | AT wilsonrandallh onthecomplexityofpartitioninganassembly AT latombejeanclaude onthecomplexityofpartitioninganassembly AT lozanopereztomas onthecomplexityofpartitioninganassembly |