Linear systems exponential dichotomy and structure of sets of hyperbolic points:
Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear different...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2000
|
Schlagworte: | |
Online-Zugang: | FHN01 URL des Erstveroeffentlichers |
Zusammenfassung: | Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The first author advanced the theory of stability through his research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems |
Beschreibung: | xii, 205 p |
ISBN: | 9789812793027 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044635525 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789812793027 |9 978-981-279-302-7 | ||
024 | 7 | |a 10.1142/4400 |2 doi | |
035 | |a (ZDB-124-WOP)00004052 | ||
035 | |a (OCoLC)1012673257 | ||
035 | |a (DE-599)BVBBV044635525 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 003.74 |2 22 | |
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
100 | 1 | |a Lin, Zhensheng |d 1919-1998 |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear systems exponential dichotomy and structure of sets of hyperbolic points |c Zhensheng Lin, Yan-Xia Lin |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2000 | |
300 | |a xii, 205 p | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The first author advanced the theory of stability through his research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems | ||
650 | 4 | |a Linear systems | |
650 | 4 | |a Differential equations, Hyperbolic | |
650 | 0 | 7 | |a Dichotomie |0 (DE-588)4149617-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Differentialgleichungssystem |0 (DE-588)4452554-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturelle Stabilität |0 (DE-588)4295517-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineares Differentialgleichungssystem |0 (DE-588)4452554-0 |D s |
689 | 0 | 1 | |a Strukturelle Stabilität |0 (DE-588)4295517-8 |D s |
689 | 0 | 2 | |a Dichotomie |0 (DE-588)4149617-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lin, Yan-Xia |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810242831 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810242832 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4400#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030033497 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4400#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178048684130304 |
---|---|
any_adam_object | |
author | Lin, Zhensheng 1919-1998 |
author_facet | Lin, Zhensheng 1919-1998 |
author_role | aut |
author_sort | Lin, Zhensheng 1919-1998 |
author_variant | z l zl |
building | Verbundindex |
bvnumber | BV044635525 |
classification_rvk | SK 520 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00004052 (OCoLC)1012673257 (DE-599)BVBBV044635525 |
dewey-full | 003.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.74 |
dewey-search | 003.74 |
dewey-sort | 13.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03275nmm a2200505zc 4500</leader><controlfield tag="001">BV044635525</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812793027</subfield><subfield code="9">978-981-279-302-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4400</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00004052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1012673257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044635525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Zhensheng</subfield><subfield code="d">1919-1998</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear systems exponential dichotomy and structure of sets of hyperbolic points</subfield><subfield code="c">Zhensheng Lin, Yan-Xia Lin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 205 p</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The first author advanced the theory of stability through his research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dichotomie</subfield><subfield code="0">(DE-588)4149617-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4452554-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturelle Stabilität</subfield><subfield code="0">(DE-588)4295517-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineares Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4452554-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strukturelle Stabilität</subfield><subfield code="0">(DE-588)4295517-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dichotomie</subfield><subfield code="0">(DE-588)4149617-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yan-Xia</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810242831</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810242832</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4400#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030033497</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4400#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044635525 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:47Z |
institution | BVB |
isbn | 9789812793027 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030033497 |
oclc_num | 1012673257 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xii, 205 p |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Lin, Zhensheng 1919-1998 Verfasser aut Linear systems exponential dichotomy and structure of sets of hyperbolic points Zhensheng Lin, Yan-Xia Lin Singapore World Scientific Pub. Co. c2000 xii, 205 p txt rdacontent c rdamedia cr rdacarrier Historically, the theory of stability is based on linear differential systems, which are simple and important systems in ordinary differential equations. The research on differential equations and on the theory of stability will, to a certain extent, be influenced by the research on linear differential systems. For differential linear equation systems, there are still many historical open questions attracting mathematicians. This book deals with the theory of linear differential systems developed around the notion of exponential dichotomies. The first author advanced the theory of stability through his research in this field. Several new important results on linear differential systems are presented. They concern exponential dichotomy and the structure of the sets of hyperbolic points. The book has five chapters: Chapter 1 introduces some necessary classical results on the linear differential systems, and the following chapters discuss exponential dichotomy, spectra of almost periodic linear systems, the Floquet theory for quasi periodic linear systems and the structure of sets of hyperbolic points. This book is a very useful reference in the area of the stability theory of ordinary differential equations and the theory of dynamic systems Linear systems Differential equations, Hyperbolic Dichotomie (DE-588)4149617-6 gnd rswk-swf Lineares Differentialgleichungssystem (DE-588)4452554-0 gnd rswk-swf Strukturelle Stabilität (DE-588)4295517-8 gnd rswk-swf Lineares Differentialgleichungssystem (DE-588)4452554-0 s Strukturelle Stabilität (DE-588)4295517-8 s Dichotomie (DE-588)4149617-6 s 1\p DE-604 Lin, Yan-Xia Sonstige oth Erscheint auch als Druck-Ausgabe 9789810242831 Erscheint auch als Druck-Ausgabe 9810242832 http://www.worldscientific.com/worldscibooks/10.1142/4400#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lin, Zhensheng 1919-1998 Linear systems exponential dichotomy and structure of sets of hyperbolic points Linear systems Differential equations, Hyperbolic Dichotomie (DE-588)4149617-6 gnd Lineares Differentialgleichungssystem (DE-588)4452554-0 gnd Strukturelle Stabilität (DE-588)4295517-8 gnd |
subject_GND | (DE-588)4149617-6 (DE-588)4452554-0 (DE-588)4295517-8 |
title | Linear systems exponential dichotomy and structure of sets of hyperbolic points |
title_auth | Linear systems exponential dichotomy and structure of sets of hyperbolic points |
title_exact_search | Linear systems exponential dichotomy and structure of sets of hyperbolic points |
title_full | Linear systems exponential dichotomy and structure of sets of hyperbolic points Zhensheng Lin, Yan-Xia Lin |
title_fullStr | Linear systems exponential dichotomy and structure of sets of hyperbolic points Zhensheng Lin, Yan-Xia Lin |
title_full_unstemmed | Linear systems exponential dichotomy and structure of sets of hyperbolic points Zhensheng Lin, Yan-Xia Lin |
title_short | Linear systems exponential dichotomy and structure of sets of hyperbolic points |
title_sort | linear systems exponential dichotomy and structure of sets of hyperbolic points |
topic | Linear systems Differential equations, Hyperbolic Dichotomie (DE-588)4149617-6 gnd Lineares Differentialgleichungssystem (DE-588)4452554-0 gnd Strukturelle Stabilität (DE-588)4295517-8 gnd |
topic_facet | Linear systems Differential equations, Hyperbolic Dichotomie Lineares Differentialgleichungssystem Strukturelle Stabilität |
url | http://www.worldscientific.com/worldscibooks/10.1142/4400#t=toc |
work_keys_str_mv | AT linzhensheng linearsystemsexponentialdichotomyandstructureofsetsofhyperbolicpoints AT linyanxia linearsystemsexponentialdichotomyandstructureofsetsofhyperbolicpoints |