Exactly solvable models of biological invasion:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Chapman & Hall/CRC
2005
|
Schriftenreihe: | Chapman & Hall/CRC mathematical biology and medicine series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 217 S. graph. Darst., Kt. 25cm |
ISBN: | 9781584885214 1584885211 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023202298 | ||
003 | DE-604 | ||
005 | 20191002 | ||
007 | t | ||
008 | 080307s2005 bd|| |||| 00||| eng d | ||
015 | |a GBA572572 |2 dnb | ||
020 | |a 9781584885214 |9 978-1-58488-521-4 | ||
020 | |a 1584885211 |c : No price |9 1-58488-521-1 | ||
035 | |a (OCoLC)181159916 | ||
035 | |a (DE-599)BVBBV023202298 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-M49 | ||
050 | 0 | |a QH353 | |
082 | 0 | |a 577/.18/015118 |2 22 | |
084 | |a BIO 134f |2 stub | ||
084 | |a BIO 105f |2 stub | ||
100 | 1 | |a Petrovskii, Sergei V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Exactly solvable models of biological invasion |c Sergei V. Petrovskii and Bai-Lian Li |
264 | 1 | |a Boca Raton [u.a.] |b Chapman & Hall/CRC |c 2005 | |
300 | |a 217 S. |b graph. Darst., Kt. |c 25cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC mathematical biology and medicine series | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Biological invasions |x Mathematical models | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invasion |g Biologie |0 (DE-588)4335542-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Invasion |g Biologie |0 (DE-588)4335542-0 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Li, Bai-Lian |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016388504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016388504 |
Datensatz im Suchindex
_version_ | 1804137479559708672 |
---|---|
adam_text | Chapman amp; Hall/CRC Mathematical Biology and Medicine Series
EXACTLY SOLVABLE MODELS
OF BIOLOGICAL INVASION
SERGEI V PETROVSKII AND BAI-LIAN LI
Chapman amp; Hall/CRC
Taylor amp; Francis Croup
Boca Raton London New York Singapore
Contents
Introduction 1
1 1 Why exactly solvable models are important 1
1 2 Intra- and inter-species interactions and local population dy-
namics 5
1 3 Basic mechanisms of species transport 11
1 4 Biological invasion: main facts and constituting examples 14
Models of biological invasion 17
2 1 Diffusion-reaction equations 17
2 2 Integral-difference models 24
2 3 Space-discrete models 30
2 4 Stochastic models 39
2 5 Concluding remarks 42
Basic methods and relevant examples 45
3 1 The Cole-Hopf transformation and the Burgers equation as a
paradigm 46
311* Exact solutions for a forced Burgers equation 50
3 2 Further application of the Cole-HopPtransformation 56
3 3 Method of piecewise linear approximation 60
331 Exact solution for a population with logistic growth 60
332 Exact solution for a population with a strong Allee ef-
fect 63
3 4 Exact solutipns of a generalized Fisher equation 68
341 Ansatz 69
342* The Ablowitz-Zeppetella method 71
3 5 More about ansatz 74
Single-species models 81
4 1 Impact of advection and migration 82
411 Advection 84
412 Density-dependent migration 85
413 General case 88
4 2 Accelerating population waves
421 Self-similar exact solution 93
4 3 The problem of critical aggregation 102
431 Practical stability concept 105
o
4432* The Wilhelmsson blow-up solution I l l
•( 5 Density-dependent diffusion 117
5 1 The Aronson-Newman solution and its generalization 117
511A general case 120
5 2 Stratified diffusion and the Allee effect 126
6 Models of interacting populations 137
6 1 Exact solution for a diffusive predator-prey system 137
611* Properties of the local system 140
612 Exact solution and its properties 143
613* Formal derivation of the exact solution 149
6 2 Migration waves in a resource-consumer system 154
7 Some alternative and complementary approaches 159
7 1 Wave speed and the eigenvalue problem 160
7 2 Convergence of the initial conditions 163
7 3 Convergence and the paradox of linearization 165
7 4 Application of the comparison principle 168
8 Ecological examples and applications 171
8 1 Invasion of Japanese beetle in the United States 172
8 2 Mount St Helens recolonization and the impact of predation 178
8 3 Stratified diffusion and rapid plant invasion 187
9 Appendix: Basic background mathematics 195
9 1 Ordinary differential equations and their solutions 195
9 2 Phase plane and stability analysis 198
9 3 Diffusion equation 200
References 205
Index 215
|
adam_txt |
Chapman amp; Hall/CRC Mathematical Biology and Medicine Series
EXACTLY SOLVABLE MODELS
OF BIOLOGICAL INVASION
SERGEI V PETROVSKII AND BAI-LIAN LI
Chapman amp; Hall/CRC
Taylor amp; Francis Croup
Boca Raton London New York Singapore
Contents
Introduction 1
1 1 Why exactly solvable models are important 1
1 2 Intra- and inter-species interactions and local population dy-
namics 5
1 3 Basic mechanisms of species transport 11
1 4 Biological invasion: main facts and constituting examples 14
Models of biological invasion 17
2 1 Diffusion-reaction equations 17
2 2 Integral-difference models 24
2 3 Space-discrete models 30
2 4 Stochastic models 39
2 5 Concluding remarks 42
Basic methods and relevant examples 45
3 1 The Cole-Hopf transformation and the Burgers equation as a
paradigm 46
311* Exact solutions for a forced Burgers equation 50
3 2 Further application of the Cole-HopPtransformation 56
3 3 Method of piecewise linear approximation 60
331 Exact solution for a population with logistic growth 60
332 Exact solution for a population with a strong Allee ef-
fect 63
3 4 Exact solutipns'of a generalized Fisher equation 68
341 Ansatz 69
342* The Ablowitz-Zeppetella method 71
3 5 More about ansatz 74
Single-species models 81
4 1 Impact of advection and migration 82
411 Advection 84
412 Density-dependent migration 85
413 General case 88
4 2 Accelerating population waves
421 Self-similar exact solution 93
4 3 The problem of critical aggregation 102
431 Practical stability concept 105
o
4432* The Wilhelmsson blow-up solution I l l
•( 5 Density-dependent diffusion 117
5 1 The Aronson-Newman solution and its generalization 117
511A general case 120
5 2 Stratified diffusion and the Allee effect 126
6 Models of interacting populations 137
6 1 Exact solution for a diffusive predator-prey system 137
611* Properties of the local system 140
612 Exact solution and its properties 143
613* Formal derivation of the exact solution 149
6 2 Migration waves in a resource-consumer system 154
7 Some alternative and complementary approaches 159
7 1 Wave speed and the eigenvalue problem 160
7 2 Convergence of the initial conditions 163
7 3 Convergence and the paradox of linearization 165
7 4 Application of the comparison principle 168
8 Ecological examples and applications 171
8 1 Invasion of Japanese beetle in the United States 172
8 2 Mount St Helens recolonization and the impact of predation 178
8 3 Stratified diffusion and rapid plant invasion 187
9 Appendix: Basic background mathematics 195
9 1 Ordinary differential equations and their solutions 195
9 2 Phase plane and stability analysis 198
9 3 Diffusion equation 200
References 205
Index 215 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Petrovskii, Sergei V. Li, Bai-Lian |
author_facet | Petrovskii, Sergei V. Li, Bai-Lian |
author_role | aut aut |
author_sort | Petrovskii, Sergei V. |
author_variant | s v p sv svp b l l bll |
building | Verbundindex |
bvnumber | BV023202298 |
callnumber-first | Q - Science |
callnumber-label | QH353 |
callnumber-raw | QH353 |
callnumber-search | QH353 |
callnumber-sort | QH 3353 |
callnumber-subject | QH - Natural History and Biology |
classification_tum | BIO 134f BIO 105f |
ctrlnum | (OCoLC)181159916 (DE-599)BVBBV023202298 |
dewey-full | 577/.18/015118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 577 - Ecology |
dewey-raw | 577/.18/015118 |
dewey-search | 577/.18/015118 |
dewey-sort | 3577 218 515118 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01785nam a2200457 c 4500</leader><controlfield tag="001">BV023202298</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080307s2005 bd|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA572572</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584885214</subfield><subfield code="9">978-1-58488-521-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584885211</subfield><subfield code="c">: No price</subfield><subfield code="9">1-58488-521-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181159916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023202298</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-M49</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH353</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">577/.18/015118</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 134f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 105f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrovskii, Sergei V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exactly solvable models of biological invasion</subfield><subfield code="c">Sergei V. Petrovskii and Bai-Lian Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">217 S.</subfield><subfield code="b">graph. Darst., Kt.</subfield><subfield code="c">25cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC mathematical biology and medicine series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological invasions</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invasion</subfield><subfield code="g">Biologie</subfield><subfield code="0">(DE-588)4335542-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Invasion</subfield><subfield code="g">Biologie</subfield><subfield code="0">(DE-588)4335542-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Bai-Lian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016388504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016388504</subfield></datafield></record></collection> |
id | DE-604.BV023202298 |
illustrated | Illustrated |
index_date | 2024-07-02T20:08:35Z |
indexdate | 2024-07-09T21:12:57Z |
institution | BVB |
isbn | 9781584885214 1584885211 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016388504 |
oclc_num | 181159916 |
open_access_boolean | |
owner | DE-M49 DE-BY-TUM |
owner_facet | DE-M49 DE-BY-TUM |
physical | 217 S. graph. Darst., Kt. 25cm |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Chapman & Hall/CRC |
record_format | marc |
series2 | Chapman & Hall/CRC mathematical biology and medicine series |
spelling | Petrovskii, Sergei V. Verfasser aut Exactly solvable models of biological invasion Sergei V. Petrovskii and Bai-Lian Li Boca Raton [u.a.] Chapman & Hall/CRC 2005 217 S. graph. Darst., Kt. 25cm txt rdacontent n rdamedia nc rdacarrier Chapman & Hall/CRC mathematical biology and medicine series Includes bibliographical references and index Mathematisches Modell Biological invasions Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Invasion Biologie (DE-588)4335542-0 gnd rswk-swf Invasion Biologie (DE-588)4335542-0 s Mathematisches Modell (DE-588)4114528-8 s b DE-604 Li, Bai-Lian Verfasser aut HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016388504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Petrovskii, Sergei V. Li, Bai-Lian Exactly solvable models of biological invasion Mathematisches Modell Biological invasions Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Invasion Biologie (DE-588)4335542-0 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4335542-0 |
title | Exactly solvable models of biological invasion |
title_auth | Exactly solvable models of biological invasion |
title_exact_search | Exactly solvable models of biological invasion |
title_exact_search_txtP | Exactly solvable models of biological invasion |
title_full | Exactly solvable models of biological invasion Sergei V. Petrovskii and Bai-Lian Li |
title_fullStr | Exactly solvable models of biological invasion Sergei V. Petrovskii and Bai-Lian Li |
title_full_unstemmed | Exactly solvable models of biological invasion Sergei V. Petrovskii and Bai-Lian Li |
title_short | Exactly solvable models of biological invasion |
title_sort | exactly solvable models of biological invasion |
topic | Mathematisches Modell Biological invasions Mathematical models Mathematisches Modell (DE-588)4114528-8 gnd Invasion Biologie (DE-588)4335542-0 gnd |
topic_facet | Mathematisches Modell Biological invasions Mathematical models Invasion Biologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016388504&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT petrovskiisergeiv exactlysolvablemodelsofbiologicalinvasion AT libailian exactlysolvablemodelsofbiologicalinvasion |