Thermodynamics of the glassy state:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Taylor & Francis
2008
|
Schriftenreihe: | Series in condensed matter physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 344 S. graph. Darst. |
ISBN: | 0750309970 9780750309974 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022821692 | ||
003 | DE-604 | ||
005 | 20110429 | ||
007 | t | ||
008 | 070925s2008 d||| |||| 00||| eng d | ||
010 | |a 007025699 | ||
020 | |a 0750309970 |9 0-7503-0997-0 | ||
020 | |a 9780750309974 |c hardback : alk. paper |9 978-0-7503-0997-4 | ||
035 | |a (OCoLC)145732932 | ||
035 | |a (DE-599)GBV534355676 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-703 |a DE-91G | ||
050 | 0 | |a QC176.8.S68 | |
082 | 0 | |a 530.4/13 |2 22 | |
084 | |a UG 2000 |0 (DE-625)145616: |2 rvk | ||
084 | |a UP 6700 |0 (DE-625)146429: |2 rvk | ||
084 | |a UQ 8600 |0 (DE-625)146601: |2 rvk | ||
084 | |a WER 037f |2 stub | ||
084 | |a PHY 623f |2 stub | ||
100 | 1 | |a Leuzzi, Luca |e Verfasser |4 aut | |
245 | 1 | 0 | |a Thermodynamics of the glassy state |c Luca Leuzzi ; Theo M. Nieuwenhuizen |
264 | 1 | |a New York [u.a.] |b Taylor & Francis |c 2008 | |
300 | |a XIX, 344 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Series in condensed matter physics | |
650 | 0 | |a Spin glasses | |
650 | 0 | |a Glass | |
650 | 4 | |a Glass | |
650 | 4 | |a Spin glasses | |
650 | 0 | 7 | |a Thermodynamik |0 (DE-588)4059827-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glaszustand |0 (DE-588)4157463-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Thermodynamik |0 (DE-588)4059827-5 |D s |
689 | 0 | 1 | |a Glaszustand |0 (DE-588)4157463-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nieuwenhuizen, Theo M. |d 1955- |e Verfasser |0 (DE-588)135782643 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027038&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016027038 |
Datensatz im Suchindex
_version_ | 1804137099714101248 |
---|---|
adam_text | SERIES IN CONDENSED MATTER PHYSICS THERMODYNAMICS OFTHEGLASSY STATE LUCA
LEUZZI INFM - NATIONAL RESEARCH COUNCIL (CNR) ITALY THEO M.
NIEUWENHUIZEN UNIVERSITY OF AMSTERDAM THE NETHERLANDS ^) TAYLOR &.
FRANCIS TAYLOR & FRANCIS GROUP NEW YORK LONDON CONTENTS PREFACE V
ACKNOWLEDGEMENTS VII ACRONYMS XI SYMBOLS XIII INTRODUCTION 1 1 THEORY
AND PHENOMENOLOGY OF GLASSES 15 1.1 PROCESSES, TIMESCALES AND
TRANSITIONS 15 1.1.1 DYNANIICAL GLASS TRANSITION 17 1.1.2 THERMAL GLASS
TRANSITION 19 1.2 STRONG AND FRAGILE GLASS FORMERS 23 1.3 AGING 26 1.3.1
TIME SECTOR SEPARATION 28 1.4 CONNGURATIONAL ENTROPY 29 1.4.1 KAUZMANN
PARADOX 30 1.4.2 STATIC PHASE TRANSITION AND KAUZMANN TEMPERATURE . . 31
1.4.3 CLASSIC VERSUS MODERN CONNGURATIONAL ENTROPY . . 31 1.4.4 AN
INTRINSICALLY DYNAMIC STATE FUNCTION 33 1.5 ADAM-GIBBS ENTROPIC THEORY
34 1.5.1 ABSENCE OF FLOW IN CATHEDRAL GLASSES 37 1.6 FRAGILITY INDEX 38
1.7 KOVACS EFFECT 39 2 TWO TEMPERATURE THERMODYNAMICS 43 2.1 ELEMENTS OF
THERMODYNAMICS 46 2.1.1 FIRST LAW AND SECOND LAW 46 2.1.2
CLAUSIUS-CLAPEYRON RELATION 47 2.1.3 MAXWELL RELATION 48 XVI 2.1.4
KEESOM-EHRENFEST RELATIONS AND PRIGOGINE-DEFAY RATIO 48 2.2 FICTIVE
TEMPERATURE 50 2.3 TWO TEMPERATURE THERMODYNAMICS 53 2.3.1 TWO
TEMPERATURE THERMODYNAMICS FOR GLASSY SYSTEMS . 55 2.4 LAWS OF
THERMODYNAMICS FOR OFF-EQUILIBRIUM SYSTEMS 56 2.4.1 MAXWELL RELATION FOR
AGING SYSTEMS 58 2.4.2 GENERALIZED CLAUSIUS-CLAPEYRON RELATION 59 2.4.3
KEESOM-EHRENFEST RELATIONS AND PRIGOGINE-DEFAY RATIO OUT OF EQUILIBRIUM
60 2.5 LAWS OF THERMODYNAMICS FOR GLASSY MAGNETS 64 2.6 EFFECTIVE
TEMPERATURE IN THERMAL CYCLES 65 2.7 FLUCTUATION FORMULA AND EFFECTIVE
TEMPERATURES 70 2.8 FLUCTUATION AND DISSIPATION OUT OF EQUILIBRIUM 72
2.8.1 FLUCTUATION-DISSIPATION RATIO 74 2.8.2 LIMITS TO THE ROLE OF FDR
AS A TEMPERATURE 81 2.9 DIRECT MEASUREMENT OF THE EFFECTIVE TEMPERATURE
83 2.A ASYMPTOTIC SOLUTION IN NONLINEAR COOLING 87 3 EXACTLY SOLVABLE
MODEIS FOR THE GLASSY STATE 89 3.1 HARMONIE OSCILLATOR MODEL 91 3.1.1
ANALYTICALLY SOLVABLE MONTE CARLO DYNAMICS 92 3.1.2 PARALLEL MONTE CARLO
VERSUS LANGEVIN DYNAMICS . . . . 96 3.2 KINETIC MODEIS WITH SEPARATION
OF TIMESCALES 99 3.2.1 STATICS AND PHASE SPACE CONSTRAINT 101 3.2.2
PARALLEL MONTE CARLO DYNAMICS OF THE HOSS MODEL: EQUATIONS OF MOTION 104
3.2.3 DYNAMICS OF THE STRONG GLASS MODEL 106 3.2.4 DYNAMICS OF THE
FRAGILE GLASS MODEL 109 3.2.5 ADAM-GIBBS RELATION IN THE HOSS MODEL 115
3.3 OUT-OF-EQUILIBRIUM THERMODYNAMICS 116 3.3.1 QUASI-STATIC APPROACH
116 3.3.2 EFFECTIVE TEMPERATURE FROM GENERALIZED LAWS 118 3.3.3 DYNAMIC
TRANSITION RATE AND EFFECTIVE TEMPERATURE . . 120 3.3.4 FDR AND
EFFECTIVE TEMPERATURE 123 3.3.5 HEAT FLOW OF A PROCESSES 131 3.3.6
EFFECTIVE TEMPERATURE FROM A FLUCTUATION FORMULA . . . 131 3.4 BELOW THE
KAUZMANN TRANSITION 132 3.4.1 INSTANTANEOUS RELAXATION TIME 134 3.5
KOVACS EFFECT: LIMITS OF TWO TEMPERATURE THERMODYNAMICS . . 135 XVII
3.5.1 ANALYTICAL SOLUTION IN THE LONG-TIME REGIME 138 3.5.2 EFFECTIVE
TEMPERATURE AND EFFECTIVE FIELD 140 3.6 MEASURING EFFECTIVE TEMPERATURE
IN HO MODEIS 142 3.6.1 HEAT FLUX BETWEEN OFF-EQUILIBRIUM SYSTEMS 144 3.7
MODE-DEPENDENT EFFECTIVE TEMPERATURE 146 3.7.1 QUASI-STATIC EFFECTIVE
TEMPERATURE 148 3.7.2 MODE-DEPENDENT FLUCTUATION-DISSIPATION RATIO 149
3.7.3 TRANSITION RATE EFFECTIVE TEMPERATURE 150 3.A HOSS EQUATIONS OF
MOTION FOR ONE-TIME VARIABLES ........ 152 3.A.1 STRENG GLASS 152 3.A.2
FRAGILE GLASS 152 3.A.3 ANALYTIC EXPRESSIONS FOR THE KOVACS EFFECT 157
3.B MONTE CARLO INTEGRALS IN ONE- AND TWO-TIME DYNAMICS 158 3.B.1
COEFFICIENTS OF THE TWO-TIME VARIABLES EQUATIONS . . . . 160 4 AGING URN
MODEIS 163 4.1 THE BACKGAMMON MODEL 166 4.1.1 EQUILIBRIUM THERMODYNAMICS
167 4.1.2 DYNAMICS 170 4.1.3 ADIABATIC APPROXIMATION AND EFFECTIVE
TEMPERATURE . . 174 4.1.4 ENTROPIE BARRIERS AND A MICROCANONIC
DERIVATION OF THE EQUATION OF MOTION 178 4.1.5 BACKGAMMON RANDOM WALKER
179 4.2 TWO-TIME DYNAMICS AND FDR EFFECTIVE TEMPERATURE 181 4.2.1
EFFECTIVE TEMPERATURE(S) IN THE BACKGAMMON MODEL . . 184 4.3 A MODEL FOR
COLLECTIVE MODES 185 4.3.1 OBSERVABLES AND EQUILIBRIUM 187 4.3.2
DYNAMICS OF THE DISORDERED BACKGAMMON MODEL . . . . 190 4.3.3
RELAXATIONAL SPECTRUM IN EQUILIBRIUM 196 4.3.4 SPECIFIC EXAMPLES OF
CONTINUOUS ENERGY DISTRIBUTION . . 197 4.3.5 A METHOD TO DETERMINE THE
THRESHOLD ENERGY SCALE . . 201 4.A OCCUPATION PROBABILITY DENSITY
EQUATIONS 203 4.B ANSATZ FOR THE ADIABATIC APPROXIMATION 205 4.C
APPROACH TO EQUILIBRIUM OF OCCUPATION DENSITIES 207 4.D PROBABILITY
DISTRIBUTION OF PROPOSED ENERGY UPDATES . . . . . 208 5 GLASSINESS IN A
DIRECTED POLYMER MODEL 211 5.1 THE DIRECTED POLYMER MODEL 212 XVIII
5.1.1 DISORDERED SITUATION AND LIFSHITZ-GRIFFITHS SINGULARI- TIES 213
5.1.2 STATIC PHASE DIAGRAM 216 5.1.3 DUAL VIEW IN TEMPERATURE 218 5.2
DIRECTED POLYMER DYNAMICS 219 5.3 COOLING AND HEATING SETUPS 223 5.3.1
POINCARE RECURRENCE TIME 223 6 POTENTIAL ENERGY LANDSCAPE APPROACH 225
6.1 POTENTIAL ENERGY LANDSCAPE 228 6.1.1 STEEPEST DESCENT 229 6.1.2
FEATURES OF THE PEL DESCRIPTION BORROWED FROM VITRE- OUS PROPERTIES 231
6.1.3 INTER- AND INTRA-BASINS TRANSITIONS: SCALES SEPARATION . 232 6.1.4
INHERENT STRUCTURES DISTRIBUTION: FORMAL TREATMENT . . 233 6.1.5
HARMONIE APPROXIMATION 236 6.2 THERMODYNAMICS IN SUPERCOOLED LIQUIDS 237
6.2.1 INHERENT STRUETURE PRESSURE 237 6.2.2 RANDOM ENERGY MODEL AND
GAUSSIAN APPROXIMATION . 239 6.2.3 EQUATION OF STATE 241 6.2.4 IS
EQUATION OF STATE 243 6.3 THE SOLID AMORPHOUS PHASE 244 6.3.1 PEL
EFFECTIVE TEMPERATURE FROM DIRECT COMPARISON TO THE AGING DYNAMICS 245
6.3.2 PEL EFFECTIVE TEMPERATURE AND PRESSURE IN THE TWO TEMPERATURE
THERMODYNAMIC FRAMEWORK 246 6.3.3 THE PRESSURE IN GLASSES 249 6.4
FRAGILITY IN THE PEL 251 6.5 PEL APPROACH TO THE RANDOM ORTHOGONAL MODEL
253 6.5.1 EFFECTIVE TEMPERATURE IN THE ROM 254 6.6 PEL APPROACH TO THE
HARMONIC OSCILLATOR MODEIS 256 6.6.1 PEL EFFECTIVE TEMPERATURE IN THE
HOSS MODEL . . . . 259 6.6.2 QUASI-STATIC DEFINITION OF IS EFFECTIVE
TEMPERATURE . . . 261 6.A MANY-BODY GLASSY MODEIS 264 6.A.1 SOFT SPHERES
265 6.A.2 LENNARD-JONES MANY-BODY INTERACTION POTENTIAL . . . . 266
6.A.3 LEWIS-WAHNSTROEM MODEL FOR ORTHOTERPHENYL 267 6.A.4 SIMPLE POINT
CHARGE EXTENDED MODEL FOR WATER 268 XIX 7 THEORIES OF THE GLASSY STATE
269 7.1 MODE-COUPLING THEORY 269 7.2 REPLICA THEORY FOR GLASSES WITH
QUENCHED DISORDER 274 7.2.1 THE RANDOM ENERGY MODEL 275 7.2.2 THE P-SPIN
MODEL 276 7.2.3 COMPLEXITY 279 7.2.4 MEAN-FIELD SCENARIO 281 7.3 GLASS
MODEIS WITHOUT QUENCHED DISORDER: CLONE THEORY . . . . 283 7.3.1
EQUILIBRIUM THERMODYNAMICS OF THE CLONED M-LIQUID . 283 7.3.2 ANALYTIC
TOOLS AND SPECIFIC BEHAVIORS IN CLONED GLASSES 285 7.3.3 EFFECTIVE
TEMPERATURE FOR THE CLONED MOLECULAR LIQUID . 287 7.4 FRUSTRATION
LIMITED DOMAIN THEORY 289 7.4.1 GEOMETRIE FRUSTRATION 289 7.4.2 AVOIDED
CRITICAL POINT 291 7.4.3 CRITICAL ASSESSMENT OF THE APPROACH 294 7.4.4
HEURISTIC SCALING ARGUMENTS 297 7.5 RANDOM FIRST ORDER TRANSITION THEORY
298 7.5.1 ADAM-GIBBS THEORY, REVISITED 300 7.5.2 ENTROPIE DRIVEN
NUCLEATION AND MOSAIC STATE . . . . 301 7.5.3 DENSITY FUNCTIONAL FOR
THE RFOT THEORY 305 7.5.4 BEYOND ENTROPIC DRIVING I: DROPLET PARTITION
FUNETION . 311 7.5.5 BEYOND ENTROPIC DRIVING II: LIBRARY OF LOCAL STATES
. . . 315 BIBLIOGRAPHY 319 INDEX 339
|
adam_txt |
SERIES IN CONDENSED MATTER PHYSICS THERMODYNAMICS OFTHEGLASSY STATE LUCA
LEUZZI INFM - NATIONAL RESEARCH COUNCIL (CNR) ITALY THEO M.
NIEUWENHUIZEN UNIVERSITY OF AMSTERDAM THE NETHERLANDS ^) TAYLOR &.
FRANCIS TAYLOR & FRANCIS GROUP NEW YORK LONDON CONTENTS PREFACE V
ACKNOWLEDGEMENTS VII ACRONYMS XI SYMBOLS XIII INTRODUCTION 1 1 THEORY
AND PHENOMENOLOGY OF GLASSES 15 1.1 PROCESSES, TIMESCALES AND
TRANSITIONS 15 1.1.1 DYNANIICAL GLASS TRANSITION 17 1.1.2 THERMAL GLASS
TRANSITION 19 1.2 STRONG AND FRAGILE GLASS FORMERS 23 1.3 AGING 26 1.3.1
TIME SECTOR SEPARATION 28 1.4 CONNGURATIONAL ENTROPY 29 1.4.1 KAUZMANN
PARADOX 30 1.4.2 STATIC PHASE TRANSITION AND KAUZMANN TEMPERATURE . . 31
1.4.3 "CLASSIC" VERSUS "MODERN" CONNGURATIONAL ENTROPY . . 31 1.4.4 AN
INTRINSICALLY DYNAMIC "STATE" FUNCTION 33 1.5 ADAM-GIBBS ENTROPIC THEORY
34 1.5.1 ABSENCE OF FLOW IN CATHEDRAL GLASSES 37 1.6 FRAGILITY INDEX 38
1.7 KOVACS EFFECT 39 2 TWO TEMPERATURE THERMODYNAMICS 43 2.1 ELEMENTS OF
THERMODYNAMICS 46 2.1.1 FIRST LAW AND SECOND LAW 46 2.1.2
CLAUSIUS-CLAPEYRON RELATION 47 2.1.3 MAXWELL RELATION 48 XVI 2.1.4
KEESOM-EHRENFEST RELATIONS AND PRIGOGINE-DEFAY RATIO 48 2.2 FICTIVE
TEMPERATURE 50 2.3 TWO TEMPERATURE THERMODYNAMICS 53 2.3.1 TWO
TEMPERATURE THERMODYNAMICS FOR GLASSY SYSTEMS . 55 2.4 LAWS OF
THERMODYNAMICS FOR OFF-EQUILIBRIUM SYSTEMS 56 2.4.1 MAXWELL RELATION FOR
AGING SYSTEMS 58 2.4.2 GENERALIZED CLAUSIUS-CLAPEYRON RELATION 59 2.4.3
KEESOM-EHRENFEST RELATIONS AND PRIGOGINE-DEFAY RATIO OUT OF EQUILIBRIUM
60 2.5 LAWS OF THERMODYNAMICS FOR GLASSY MAGNETS 64 2.6 EFFECTIVE
TEMPERATURE IN THERMAL CYCLES 65 2.7 FLUCTUATION FORMULA AND EFFECTIVE
TEMPERATURES 70 2.8 FLUCTUATION AND DISSIPATION OUT OF EQUILIBRIUM 72
2.8.1 FLUCTUATION-DISSIPATION RATIO 74 2.8.2 LIMITS TO THE ROLE OF FDR
AS A TEMPERATURE 81 2.9 DIRECT MEASUREMENT OF THE EFFECTIVE TEMPERATURE
83 2.A ASYMPTOTIC SOLUTION IN NONLINEAR COOLING 87 3 EXACTLY SOLVABLE
MODEIS FOR THE GLASSY STATE 89 3.1 HARMONIE OSCILLATOR MODEL 91 3.1.1
ANALYTICALLY SOLVABLE MONTE CARLO DYNAMICS 92 3.1.2 PARALLEL MONTE CARLO
VERSUS LANGEVIN DYNAMICS . . . . 96 3.2 KINETIC MODEIS WITH SEPARATION
OF TIMESCALES 99 3.2.1 STATICS AND PHASE SPACE CONSTRAINT 101 3.2.2
PARALLEL MONTE CARLO DYNAMICS OF THE HOSS MODEL: EQUATIONS OF MOTION 104
3.2.3 DYNAMICS OF THE STRONG GLASS MODEL 106 3.2.4 DYNAMICS OF THE
FRAGILE GLASS MODEL 109 3.2.5 ADAM-GIBBS RELATION IN THE HOSS MODEL 115
3.3 OUT-OF-EQUILIBRIUM THERMODYNAMICS 116 3.3.1 QUASI-STATIC APPROACH
116 3.3.2 EFFECTIVE TEMPERATURE FROM GENERALIZED LAWS 118 3.3.3 DYNAMIC
TRANSITION RATE AND EFFECTIVE TEMPERATURE . . 120 3.3.4 FDR AND
EFFECTIVE TEMPERATURE 123 3.3.5 HEAT FLOW OF A PROCESSES 131 3.3.6
EFFECTIVE TEMPERATURE FROM A FLUCTUATION FORMULA . . . 131 3.4 BELOW THE
KAUZMANN TRANSITION 132 3.4.1 INSTANTANEOUS RELAXATION TIME 134 3.5
KOVACS EFFECT: LIMITS OF TWO TEMPERATURE THERMODYNAMICS . . 135 XVII
3.5.1 ANALYTICAL SOLUTION IN THE LONG-TIME REGIME 138 3.5.2 EFFECTIVE
TEMPERATURE AND EFFECTIVE FIELD 140 3.6 MEASURING EFFECTIVE TEMPERATURE
IN HO MODEIS 142 3.6.1 HEAT FLUX BETWEEN OFF-EQUILIBRIUM SYSTEMS 144 3.7
MODE-DEPENDENT EFFECTIVE TEMPERATURE 146 3.7.1 QUASI-STATIC EFFECTIVE
TEMPERATURE 148 3.7.2 MODE-DEPENDENT FLUCTUATION-DISSIPATION RATIO 149
3.7.3 TRANSITION RATE EFFECTIVE TEMPERATURE 150 3.A HOSS EQUATIONS OF
MOTION FOR ONE-TIME VARIABLES . 152 3.A.1 STRENG GLASS 152 3.A.2
FRAGILE GLASS 152 3.A.3 ANALYTIC EXPRESSIONS FOR THE KOVACS EFFECT 157
3.B MONTE CARLO INTEGRALS IN ONE- AND TWO-TIME DYNAMICS 158 3.B.1
COEFFICIENTS OF THE TWO-TIME VARIABLES EQUATIONS . . . . 160 4 AGING URN
MODEIS 163 4.1 THE BACKGAMMON MODEL 166 4.1.1 EQUILIBRIUM THERMODYNAMICS
167 4.1.2 DYNAMICS 170 4.1.3 ADIABATIC APPROXIMATION AND EFFECTIVE
TEMPERATURE . . 174 4.1.4 ENTROPIE BARRIERS AND A MICROCANONIC
DERIVATION OF THE EQUATION OF MOTION 178 4.1.5 BACKGAMMON RANDOM WALKER
179 4.2 TWO-TIME DYNAMICS AND FDR EFFECTIVE TEMPERATURE 181 4.2.1
EFFECTIVE TEMPERATURE(S) IN THE BACKGAMMON MODEL . . 184 4.3 A MODEL FOR
COLLECTIVE MODES 185 4.3.1 OBSERVABLES AND EQUILIBRIUM 187 4.3.2
DYNAMICS OF THE DISORDERED BACKGAMMON MODEL . . . . 190 4.3.3
RELAXATIONAL SPECTRUM IN EQUILIBRIUM 196 4.3.4 SPECIFIC EXAMPLES OF
CONTINUOUS ENERGY DISTRIBUTION . . 197 4.3.5 A METHOD TO DETERMINE THE
THRESHOLD ENERGY SCALE . . 201 4.A OCCUPATION PROBABILITY DENSITY
EQUATIONS 203 4.B ANSATZ FOR THE ADIABATIC APPROXIMATION 205 4.C
APPROACH TO EQUILIBRIUM OF OCCUPATION DENSITIES 207 4.D PROBABILITY
DISTRIBUTION OF PROPOSED ENERGY UPDATES . . . . . 208 5 GLASSINESS IN A
DIRECTED POLYMER MODEL 211 5.1 THE DIRECTED POLYMER MODEL 212 XVIII
5.1.1 DISORDERED SITUATION AND LIFSHITZ-GRIFFITHS SINGULARI- TIES 213
5.1.2 STATIC PHASE DIAGRAM 216 5.1.3 DUAL VIEW IN TEMPERATURE 218 5.2
DIRECTED POLYMER DYNAMICS 219 5.3 COOLING AND HEATING SETUPS 223 5.3.1
POINCARE RECURRENCE TIME 223 6 POTENTIAL ENERGY LANDSCAPE APPROACH 225
6.1 POTENTIAL ENERGY LANDSCAPE 228 6.1.1 STEEPEST DESCENT 229 6.1.2
FEATURES OF THE PEL DESCRIPTION BORROWED FROM VITRE- OUS PROPERTIES 231
6.1.3 INTER- AND INTRA-BASINS TRANSITIONS: SCALES SEPARATION . 232 6.1.4
INHERENT STRUCTURES DISTRIBUTION: FORMAL TREATMENT . . 233 6.1.5
HARMONIE APPROXIMATION 236 6.2 THERMODYNAMICS IN SUPERCOOLED LIQUIDS 237
6.2.1 INHERENT STRUETURE PRESSURE 237 6.2.2 RANDOM ENERGY MODEL AND
GAUSSIAN APPROXIMATION . 239 6.2.3 EQUATION OF STATE 241 6.2.4 IS
EQUATION OF STATE 243 6.3 THE SOLID AMORPHOUS PHASE 244 6.3.1 PEL
EFFECTIVE TEMPERATURE FROM DIRECT COMPARISON TO THE AGING DYNAMICS 245
6.3.2 PEL EFFECTIVE TEMPERATURE AND PRESSURE IN THE TWO TEMPERATURE
THERMODYNAMIC FRAMEWORK 246 6.3.3 THE PRESSURE IN GLASSES 249 6.4
FRAGILITY IN THE PEL 251 6.5 PEL APPROACH TO THE RANDOM ORTHOGONAL MODEL
253 6.5.1 EFFECTIVE TEMPERATURE IN THE ROM 254 6.6 PEL APPROACH TO THE
HARMONIC OSCILLATOR MODEIS 256 6.6.1 PEL EFFECTIVE TEMPERATURE IN THE
HOSS MODEL . . . . 259 6.6.2 QUASI-STATIC DEFINITION OF IS EFFECTIVE
TEMPERATURE . . . 261 6.A MANY-BODY GLASSY MODEIS 264 6.A.1 SOFT SPHERES
265 6.A.2 LENNARD-JONES MANY-BODY INTERACTION POTENTIAL . . . . 266
6.A.3 LEWIS-WAHNSTROEM MODEL FOR ORTHOTERPHENYL 267 6.A.4 SIMPLE POINT
CHARGE EXTENDED MODEL FOR WATER 268 XIX 7 THEORIES OF THE GLASSY STATE
269 7.1 MODE-COUPLING THEORY 269 7.2 REPLICA THEORY FOR GLASSES WITH
QUENCHED DISORDER 274 7.2.1 THE RANDOM ENERGY MODEL 275 7.2.2 THE P-SPIN
MODEL 276 7.2.3 COMPLEXITY 279 7.2.4 MEAN-FIELD SCENARIO 281 7.3 GLASS
MODEIS WITHOUT QUENCHED DISORDER: CLONE THEORY . . . . 283 7.3.1
EQUILIBRIUM THERMODYNAMICS OF THE CLONED M-LIQUID . 283 7.3.2 ANALYTIC
TOOLS AND SPECIFIC BEHAVIORS IN CLONED GLASSES 285 7.3.3 EFFECTIVE
TEMPERATURE FOR THE CLONED MOLECULAR LIQUID . 287 7.4 FRUSTRATION
LIMITED DOMAIN THEORY 289 7.4.1 GEOMETRIE FRUSTRATION 289 7.4.2 AVOIDED
CRITICAL POINT 291 7.4.3 CRITICAL ASSESSMENT OF THE APPROACH 294 7.4.4
HEURISTIC SCALING ARGUMENTS 297 7.5 RANDOM FIRST ORDER TRANSITION THEORY
298 7.5.1 ADAM-GIBBS THEORY, REVISITED 300 7.5.2 ENTROPIE DRIVEN
"NUCLEATION" AND MOSAIC STATE . . . . 301 7.5.3 DENSITY FUNCTIONAL FOR
THE RFOT THEORY 305 7.5.4 BEYOND ENTROPIC DRIVING I: DROPLET PARTITION
FUNETION . 311 7.5.5 BEYOND ENTROPIC DRIVING II: LIBRARY OF LOCAL STATES
. . . 315 BIBLIOGRAPHY 319 INDEX 339 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Leuzzi, Luca Nieuwenhuizen, Theo M. 1955- |
author_GND | (DE-588)135782643 |
author_facet | Leuzzi, Luca Nieuwenhuizen, Theo M. 1955- |
author_role | aut aut |
author_sort | Leuzzi, Luca |
author_variant | l l ll t m n tm tmn |
building | Verbundindex |
bvnumber | BV022821692 |
callnumber-first | Q - Science |
callnumber-label | QC176 |
callnumber-raw | QC176.8.S68 |
callnumber-search | QC176.8.S68 |
callnumber-sort | QC 3176.8 S68 |
callnumber-subject | QC - Physics |
classification_rvk | UG 2000 UP 6700 UQ 8600 |
classification_tum | WER 037f PHY 623f |
ctrlnum | (OCoLC)145732932 (DE-599)GBV534355676 |
dewey-full | 530.4/13 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/13 |
dewey-search | 530.4/13 |
dewey-sort | 3530.4 213 |
dewey-tens | 530 - Physics |
discipline | Physik Werkstoffwissenschaften |
discipline_str_mv | Physik Werkstoffwissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01830nam a2200505 c 4500</leader><controlfield tag="001">BV022821692</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110429 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070925s2008 d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">007025699</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0750309970</subfield><subfield code="9">0-7503-0997-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780750309974</subfield><subfield code="c">hardback : alk. paper</subfield><subfield code="9">978-0-7503-0997-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)145732932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV534355676</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC176.8.S68</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/13</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2000</subfield><subfield code="0">(DE-625)145616:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 6700</subfield><subfield code="0">(DE-625)146429:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 8600</subfield><subfield code="0">(DE-625)146601:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 037f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 623f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leuzzi, Luca</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermodynamics of the glassy state</subfield><subfield code="c">Luca Leuzzi ; Theo M. Nieuwenhuizen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 344 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in condensed matter physics</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Spin glasses</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Glass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glass</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spin glasses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glaszustand</subfield><subfield code="0">(DE-588)4157463-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Thermodynamik</subfield><subfield code="0">(DE-588)4059827-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Glaszustand</subfield><subfield code="0">(DE-588)4157463-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nieuwenhuizen, Theo M.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135782643</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027038&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016027038</subfield></datafield></record></collection> |
id | DE-604.BV022821692 |
illustrated | Illustrated |
index_date | 2024-07-02T18:40:18Z |
indexdate | 2024-07-09T21:06:55Z |
institution | BVB |
isbn | 0750309970 9780750309974 |
language | English |
lccn | 007025699 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016027038 |
oclc_num | 145732932 |
open_access_boolean | |
owner | DE-20 DE-703 DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-703 DE-91G DE-BY-TUM |
physical | XIX, 344 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Taylor & Francis |
record_format | marc |
series2 | Series in condensed matter physics |
spelling | Leuzzi, Luca Verfasser aut Thermodynamics of the glassy state Luca Leuzzi ; Theo M. Nieuwenhuizen New York [u.a.] Taylor & Francis 2008 XIX, 344 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Series in condensed matter physics Spin glasses Glass Thermodynamik (DE-588)4059827-5 gnd rswk-swf Glaszustand (DE-588)4157463-1 gnd rswk-swf Thermodynamik (DE-588)4059827-5 s Glaszustand (DE-588)4157463-1 s DE-604 Nieuwenhuizen, Theo M. 1955- Verfasser (DE-588)135782643 aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027038&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Leuzzi, Luca Nieuwenhuizen, Theo M. 1955- Thermodynamics of the glassy state Spin glasses Glass Thermodynamik (DE-588)4059827-5 gnd Glaszustand (DE-588)4157463-1 gnd |
subject_GND | (DE-588)4059827-5 (DE-588)4157463-1 |
title | Thermodynamics of the glassy state |
title_auth | Thermodynamics of the glassy state |
title_exact_search | Thermodynamics of the glassy state |
title_exact_search_txtP | Thermodynamics of the glassy state |
title_full | Thermodynamics of the glassy state Luca Leuzzi ; Theo M. Nieuwenhuizen |
title_fullStr | Thermodynamics of the glassy state Luca Leuzzi ; Theo M. Nieuwenhuizen |
title_full_unstemmed | Thermodynamics of the glassy state Luca Leuzzi ; Theo M. Nieuwenhuizen |
title_short | Thermodynamics of the glassy state |
title_sort | thermodynamics of the glassy state |
topic | Spin glasses Glass Thermodynamik (DE-588)4059827-5 gnd Glaszustand (DE-588)4157463-1 gnd |
topic_facet | Spin glasses Glass Thermodynamik Glaszustand |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027038&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT leuzziluca thermodynamicsoftheglassystate AT nieuwenhuizentheom thermodynamicsoftheglassystate |