Nonlinear algebra in an ACORN: with applications to deep learning
"A simple algorithm for solving a set of nonlinear equations by matrix algebra has been discovered recently - first by transforming them into an equivalent matrix equation and then finding the solution analytically in terms of the inverse matrix of this equation. With this newly developed ACORN...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Publishing Company Pte Limited
2018
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | "A simple algorithm for solving a set of nonlinear equations by matrix algebra has been discovered recently - first by transforming them into an equivalent matrix equation and then finding the solution analytically in terms of the inverse matrix of this equation. With this newly developed ACORN (Adaptive Constrained Optimal Robust Nonlinear) algorithm, it is possible to minimize the objective function [constructed from the functions in the nonlinear set of equations] without computing its derivatives. This book will present the details of ACORN algorithm and how it is used to solve large scale nonlinear equations with an innovative approach ACORN Magic [minimization algorithms gathered in a cloud]. The ultimate motivation of this work is its application to optimization. In recent years, with the advances in big-data, optimization becomes an even more powerful tool in knowledge discovery. ACORN Magic is the perfect choice in this kind of application because of that fact that it is fast, robust and simple enough to be embedded in any type of machine learning program."-- |
Beschreibung: | Includes bibliographical references (pages 71) |
Beschreibung: | 1 online resource (92 pages) illustrations (some color) |
ISBN: | 9789813271524 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV046810695 | ||
003 | DE-604 | ||
005 | 20201104 | ||
007 | cr|uuu---uuuuu | ||
008 | 200716s2018 |||| o||u| ||||||eng d | ||
020 | |a 9789813271524 |9 978-981-3271-52-4 | ||
024 | 7 | |a 10.1142/11022 |2 doi | |
035 | |a (ZDB-124-WOP)00011022 | ||
035 | |a (OCoLC)1100118845 | ||
035 | |a (DE-599)BVBBV046810695 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 519.72 | |
100 | 1 | |a Lee, Martin J |4 aut | |
245 | 1 | 0 | |a Nonlinear algebra in an ACORN |b with applications to deep learning |c Martin J. Lee, Ken Tsang |
264 | 1 | |a Singapore |b World Scientific Publishing Company Pte Limited |c 2018 | |
300 | |a 1 online resource (92 pages) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 71) | ||
520 | |a "A simple algorithm for solving a set of nonlinear equations by matrix algebra has been discovered recently - first by transforming them into an equivalent matrix equation and then finding the solution analytically in terms of the inverse matrix of this equation. With this newly developed ACORN (Adaptive Constrained Optimal Robust Nonlinear) algorithm, it is possible to minimize the objective function [constructed from the functions in the nonlinear set of equations] without computing its derivatives. This book will present the details of ACORN algorithm and how it is used to solve large scale nonlinear equations with an innovative approach ACORN Magic [minimization algorithms gathered in a cloud]. The ultimate motivation of this work is its application to optimization. In recent years, with the advances in big-data, optimization becomes an even more powerful tool in knowledge discovery. ACORN Magic is the perfect choice in this kind of application because of that fact that it is fast, robust and simple enough to be embedded in any type of machine learning program."-- | ||
650 | 4 | |a Robust optimization | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Matrices | |
650 | 4 | |a Electronic books | |
700 | 1 | |a Tsang, Ken |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789813271517 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/11022 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032219258 | ||
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/11022 |l UBY01 |p ZDB-124-WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804181615953313792 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lee, Martin J |
author_facet | Lee, Martin J |
author_role | aut |
author_sort | Lee, Martin J |
author_variant | m j l mj mjl |
building | Verbundindex |
bvnumber | BV046810695 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00011022 (OCoLC)1100118845 (DE-599)BVBBV046810695 |
dewey-full | 519.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.72 |
dewey-search | 519.72 |
dewey-sort | 3519.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02585nmm a2200421zc 4500</leader><controlfield tag="001">BV046810695</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201104 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">200716s2018 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789813271524</subfield><subfield code="9">978-981-3271-52-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/11022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00011022</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1100118845</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV046810695</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.72</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Martin J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear algebra in an ACORN</subfield><subfield code="b">with applications to deep learning</subfield><subfield code="c">Martin J. Lee, Ken Tsang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Publishing Company Pte Limited</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (92 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 71)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"A simple algorithm for solving a set of nonlinear equations by matrix algebra has been discovered recently - first by transforming them into an equivalent matrix equation and then finding the solution analytically in terms of the inverse matrix of this equation. With this newly developed ACORN (Adaptive Constrained Optimal Robust Nonlinear) algorithm, it is possible to minimize the objective function [constructed from the functions in the nonlinear set of equations] without computing its derivatives. This book will present the details of ACORN algorithm and how it is used to solve large scale nonlinear equations with an innovative approach ACORN Magic [minimization algorithms gathered in a cloud]. The ultimate motivation of this work is its application to optimization. In recent years, with the advances in big-data, optimization becomes an even more powerful tool in knowledge discovery. ACORN Magic is the perfect choice in this kind of application because of that fact that it is fast, robust and simple enough to be embedded in any type of machine learning program."--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsang, Ken</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789813271517</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11022</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032219258</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/11022</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV046810695 |
illustrated | Illustrated |
index_date | 2024-07-03T14:58:49Z |
indexdate | 2024-07-10T08:54:29Z |
institution | BVB |
isbn | 9789813271524 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032219258 |
oclc_num | 1100118845 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 online resource (92 pages) illustrations (some color) |
psigel | ZDB-124-WOP |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | World Scientific Publishing Company Pte Limited |
record_format | marc |
spelling | Lee, Martin J aut Nonlinear algebra in an ACORN with applications to deep learning Martin J. Lee, Ken Tsang Singapore World Scientific Publishing Company Pte Limited 2018 1 online resource (92 pages) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 71) "A simple algorithm for solving a set of nonlinear equations by matrix algebra has been discovered recently - first by transforming them into an equivalent matrix equation and then finding the solution analytically in terms of the inverse matrix of this equation. With this newly developed ACORN (Adaptive Constrained Optimal Robust Nonlinear) algorithm, it is possible to minimize the objective function [constructed from the functions in the nonlinear set of equations] without computing its derivatives. This book will present the details of ACORN algorithm and how it is used to solve large scale nonlinear equations with an innovative approach ACORN Magic [minimization algorithms gathered in a cloud]. The ultimate motivation of this work is its application to optimization. In recent years, with the advances in big-data, optimization becomes an even more powerful tool in knowledge discovery. ACORN Magic is the perfect choice in this kind of application because of that fact that it is fast, robust and simple enough to be embedded in any type of machine learning program."-- Robust optimization Mathematical optimization Matrices Electronic books Tsang, Ken Sonstige oth Erscheint auch als Druck-Ausgabe 9789813271517 http://www.worldscientific.com/worldscibooks/10.1142/11022 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lee, Martin J Nonlinear algebra in an ACORN with applications to deep learning Robust optimization Mathematical optimization Matrices Electronic books |
title | Nonlinear algebra in an ACORN with applications to deep learning |
title_auth | Nonlinear algebra in an ACORN with applications to deep learning |
title_exact_search | Nonlinear algebra in an ACORN with applications to deep learning |
title_exact_search_txtP | Nonlinear algebra in an ACORN with applications to deep learning |
title_full | Nonlinear algebra in an ACORN with applications to deep learning Martin J. Lee, Ken Tsang |
title_fullStr | Nonlinear algebra in an ACORN with applications to deep learning Martin J. Lee, Ken Tsang |
title_full_unstemmed | Nonlinear algebra in an ACORN with applications to deep learning Martin J. Lee, Ken Tsang |
title_short | Nonlinear algebra in an ACORN |
title_sort | nonlinear algebra in an acorn with applications to deep learning |
title_sub | with applications to deep learning |
topic | Robust optimization Mathematical optimization Matrices Electronic books |
topic_facet | Robust optimization Mathematical optimization Matrices Electronic books |
url | http://www.worldscientific.com/worldscibooks/10.1142/11022 |
work_keys_str_mv | AT leemartinj nonlinearalgebrainanacornwithapplicationstodeeplearning AT tsangken nonlinearalgebrainanacornwithapplicationstodeeplearning |