Data orchestration in deep learning accelerators:
Intro -- Preface -- Acknowledgments -- Introduction to Data Orchestration -- Deep Neural Networks (DNNs) -- DNN Training and Inference -- DNN Architectures and Layer Types -- Popular DNN Models -- DNN Accelerators -- Computations within DNNs -- Challenge: Data Movement -- Opportunity: Data Reuse --...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[San Rafael]
Morgan & Claypool Publishers
[2020]
|
Schriftenreihe: | Synthesis lectures on computer architecture
#52 |
Schlagworte: | |
Online-Zugang: | TUM01 |
Zusammenfassung: | Intro -- Preface -- Acknowledgments -- Introduction to Data Orchestration -- Deep Neural Networks (DNNs) -- DNN Training and Inference -- DNN Architectures and Layer Types -- Popular DNN Models -- DNN Accelerators -- Computations within DNNs -- Challenge: Data Movement -- Opportunity: Data Reuse -- Book Overview -- Dataflow and Data Reuse -- Data Reuse Opportunities -- Data Reuse in 1D Convolution -- Dataflows and Mappings -- Deep Dive into Dataflows and Mappings -- Harnessing Data Reuse via Hardware Support -- Dataflows and Data Reuse in CONV2D -- CONV2D Operation -- Data Dimension Coupling and Data Reuse Opportunities -- Data Reuse in a CONV2D Example -- Convolution as Matrix Multiplication -- Summary -- Buffer Hierarchies -- Motivation -- Classifying Buffering Approaches -- Implicit vs. Explicit Orchestration -- Coupled vs. Decoupled Orchestration -- Synchronization Concerns -- The Buffet Storage Idiom -- Buffet Operational Behavior -- Buffet Synchronization Details -- Example Orchestration with Buffets -- Automatically Deriving Configuration -- Composition of Buffer Idioms -- Buffer Hierarchies -- Sharing Fills via Multicast -- Sharing Physical RAMs Efficiently -- Example of Hierarchical Orchestration -- Other Relevant Buffering Idioms for Accelerators -- Research Needs for Accelerator Buffer Hierarchies -- Summary -- Networks-on-Chip -- Communication Phases -- Traditional Networks-on-Chip -- Topology -- Routing -- Flow Control -- Router Microarchitecture -- Challenges with Traditional NoCs -- Specialized NoCs for DNN Accelerators -- Topology -- Routing -- Flow Control -- Leveraging Reuse via the NoC -- Implications of Temporal Reuse -- Implications of Spatial Reuse -- Tying it Together: From Dataflow to Traffic Flow -- Summary -- Putting it Together: Architecting a DNN Accelerator -- Design Flow -- Target Specs and Constraints |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9781681738703 |
Internformat
MARC
LEADER | 00000nmm a22000001cb4500 | ||
---|---|---|---|
001 | BV047030890 | ||
003 | DE-604 | ||
005 | 20201204 | ||
007 | cr|uuu---uuuuu | ||
008 | 201126s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781681738703 |9 978-1-68173-870-3 | ||
035 | |a (OCoLC)1225882175 | ||
035 | |a (DE-599)KEP055749704 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a DAT 708 |2 stub | ||
100 | 1 | |a Krishna, Tushar |e Verfasser |0 (DE-588)1206961228 |4 aut | |
245 | 1 | 0 | |a Data orchestration in deep learning accelerators |c Tushar Krishna (Georgia Institute of Technology), Hyoukjun Kwon (Georgia Institute of Technology), Angshuman Parashar (NVIDIA), Michael Pellauer (NVIDIA), Ananda Samajdar (Georgia Institute of Technology) |
264 | 1 | |a [San Rafael] |b Morgan & Claypool Publishers |c [2020] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Synthesis lectures on computer architecture |v #52 | |
500 | |a Description based on publisher supplied metadata and other sources | ||
520 | 3 | |a Intro -- Preface -- Acknowledgments -- Introduction to Data Orchestration -- Deep Neural Networks (DNNs) -- DNN Training and Inference -- DNN Architectures and Layer Types -- Popular DNN Models -- DNN Accelerators -- Computations within DNNs -- Challenge: Data Movement -- Opportunity: Data Reuse -- Book Overview -- Dataflow and Data Reuse -- Data Reuse Opportunities -- Data Reuse in 1D Convolution -- Dataflows and Mappings -- Deep Dive into Dataflows and Mappings -- Harnessing Data Reuse via Hardware Support -- Dataflows and Data Reuse in CONV2D -- CONV2D Operation -- Data Dimension Coupling and Data Reuse Opportunities -- Data Reuse in a CONV2D Example -- Convolution as Matrix Multiplication -- Summary -- Buffer Hierarchies -- Motivation -- Classifying Buffering Approaches -- Implicit vs. Explicit Orchestration -- Coupled vs. Decoupled Orchestration -- Synchronization Concerns -- The Buffet Storage Idiom -- Buffet Operational Behavior -- Buffet Synchronization Details -- Example Orchestration with Buffets -- Automatically Deriving Configuration -- Composition of Buffer Idioms -- Buffer Hierarchies -- Sharing Fills via Multicast -- Sharing Physical RAMs Efficiently -- Example of Hierarchical Orchestration -- Other Relevant Buffering Idioms for Accelerators -- Research Needs for Accelerator Buffer Hierarchies -- Summary -- Networks-on-Chip -- Communication Phases -- Traditional Networks-on-Chip -- Topology -- Routing -- Flow Control -- Router Microarchitecture -- Challenges with Traditional NoCs -- Specialized NoCs for DNN Accelerators -- Topology -- Routing -- Flow Control -- Leveraging Reuse via the NoC -- Implications of Temporal Reuse -- Implications of Spatial Reuse -- Tying it Together: From Dataflow to Traffic Flow -- Summary -- Putting it Together: Architecting a DNN Accelerator -- Design Flow -- Target Specs and Constraints | |
653 | 0 | |a Electronic books | |
700 | 1 | |a Kwon, Hyoukjun |e Verfasser |4 aut | |
700 | 1 | |a Parashar, Angshuman |e Verfasser |4 aut | |
700 | 1 | |a Pellauer, Michael |e Verfasser |4 aut | |
700 | 1 | |a Samajdar, Ananda |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-68173-871-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-68173-869-7 |
830 | 0 | |a Synthesis lectures on computer architecture |v #52 |w (DE-604)BV047042546 |9 52 | |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-032438162 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6318949 |l TUM01 |p ZDB-30-PQE |q TUM_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182003233325056 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Krishna, Tushar Kwon, Hyoukjun Parashar, Angshuman Pellauer, Michael Samajdar, Ananda |
author_GND | (DE-588)1206961228 |
author_facet | Krishna, Tushar Kwon, Hyoukjun Parashar, Angshuman Pellauer, Michael Samajdar, Ananda |
author_role | aut aut aut aut aut |
author_sort | Krishna, Tushar |
author_variant | t k tk h k hk a p ap m p mp a s as |
building | Verbundindex |
bvnumber | BV047030890 |
classification_tum | DAT 708 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1225882175 (DE-599)KEP055749704 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03676nmm a22004211cb4500</leader><controlfield tag="001">BV047030890</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201204 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201126s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781681738703</subfield><subfield code="9">978-1-68173-870-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1225882175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP055749704</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krishna, Tushar</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1206961228</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data orchestration in deep learning accelerators</subfield><subfield code="c">Tushar Krishna (Georgia Institute of Technology), Hyoukjun Kwon (Georgia Institute of Technology), Angshuman Parashar (NVIDIA), Michael Pellauer (NVIDIA), Ananda Samajdar (Georgia Institute of Technology)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[San Rafael]</subfield><subfield code="b">Morgan & Claypool Publishers</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthesis lectures on computer architecture</subfield><subfield code="v">#52</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgments -- Introduction to Data Orchestration -- Deep Neural Networks (DNNs) -- DNN Training and Inference -- DNN Architectures and Layer Types -- Popular DNN Models -- DNN Accelerators -- Computations within DNNs -- Challenge: Data Movement -- Opportunity: Data Reuse -- Book Overview -- Dataflow and Data Reuse -- Data Reuse Opportunities -- Data Reuse in 1D Convolution -- Dataflows and Mappings -- Deep Dive into Dataflows and Mappings -- Harnessing Data Reuse via Hardware Support -- Dataflows and Data Reuse in CONV2D -- CONV2D Operation -- Data Dimension Coupling and Data Reuse Opportunities -- Data Reuse in a CONV2D Example -- Convolution as Matrix Multiplication -- Summary -- Buffer Hierarchies -- Motivation -- Classifying Buffering Approaches -- Implicit vs. Explicit Orchestration -- Coupled vs. Decoupled Orchestration -- Synchronization Concerns -- The Buffet Storage Idiom -- Buffet Operational Behavior -- Buffet Synchronization Details -- Example Orchestration with Buffets -- Automatically Deriving Configuration -- Composition of Buffer Idioms -- Buffer Hierarchies -- Sharing Fills via Multicast -- Sharing Physical RAMs Efficiently -- Example of Hierarchical Orchestration -- Other Relevant Buffering Idioms for Accelerators -- Research Needs for Accelerator Buffer Hierarchies -- Summary -- Networks-on-Chip -- Communication Phases -- Traditional Networks-on-Chip -- Topology -- Routing -- Flow Control -- Router Microarchitecture -- Challenges with Traditional NoCs -- Specialized NoCs for DNN Accelerators -- Topology -- Routing -- Flow Control -- Leveraging Reuse via the NoC -- Implications of Temporal Reuse -- Implications of Spatial Reuse -- Tying it Together: From Dataflow to Traffic Flow -- Summary -- Putting it Together: Architecting a DNN Accelerator -- Design Flow -- Target Specs and Constraints</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kwon, Hyoukjun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parashar, Angshuman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pellauer, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samajdar, Ananda</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-68173-871-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-68173-869-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthesis lectures on computer architecture</subfield><subfield code="v">#52</subfield><subfield code="w">(DE-604)BV047042546</subfield><subfield code="9">52</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032438162</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6318949</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047030890 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:02:14Z |
indexdate | 2024-07-10T09:00:38Z |
institution | BVB |
isbn | 9781681738703 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032438162 |
oclc_num | 1225882175 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_Einzelkauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Morgan & Claypool Publishers |
record_format | marc |
series | Synthesis lectures on computer architecture |
series2 | Synthesis lectures on computer architecture |
spelling | Krishna, Tushar Verfasser (DE-588)1206961228 aut Data orchestration in deep learning accelerators Tushar Krishna (Georgia Institute of Technology), Hyoukjun Kwon (Georgia Institute of Technology), Angshuman Parashar (NVIDIA), Michael Pellauer (NVIDIA), Ananda Samajdar (Georgia Institute of Technology) [San Rafael] Morgan & Claypool Publishers [2020] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Synthesis lectures on computer architecture #52 Description based on publisher supplied metadata and other sources Intro -- Preface -- Acknowledgments -- Introduction to Data Orchestration -- Deep Neural Networks (DNNs) -- DNN Training and Inference -- DNN Architectures and Layer Types -- Popular DNN Models -- DNN Accelerators -- Computations within DNNs -- Challenge: Data Movement -- Opportunity: Data Reuse -- Book Overview -- Dataflow and Data Reuse -- Data Reuse Opportunities -- Data Reuse in 1D Convolution -- Dataflows and Mappings -- Deep Dive into Dataflows and Mappings -- Harnessing Data Reuse via Hardware Support -- Dataflows and Data Reuse in CONV2D -- CONV2D Operation -- Data Dimension Coupling and Data Reuse Opportunities -- Data Reuse in a CONV2D Example -- Convolution as Matrix Multiplication -- Summary -- Buffer Hierarchies -- Motivation -- Classifying Buffering Approaches -- Implicit vs. Explicit Orchestration -- Coupled vs. Decoupled Orchestration -- Synchronization Concerns -- The Buffet Storage Idiom -- Buffet Operational Behavior -- Buffet Synchronization Details -- Example Orchestration with Buffets -- Automatically Deriving Configuration -- Composition of Buffer Idioms -- Buffer Hierarchies -- Sharing Fills via Multicast -- Sharing Physical RAMs Efficiently -- Example of Hierarchical Orchestration -- Other Relevant Buffering Idioms for Accelerators -- Research Needs for Accelerator Buffer Hierarchies -- Summary -- Networks-on-Chip -- Communication Phases -- Traditional Networks-on-Chip -- Topology -- Routing -- Flow Control -- Router Microarchitecture -- Challenges with Traditional NoCs -- Specialized NoCs for DNN Accelerators -- Topology -- Routing -- Flow Control -- Leveraging Reuse via the NoC -- Implications of Temporal Reuse -- Implications of Spatial Reuse -- Tying it Together: From Dataflow to Traffic Flow -- Summary -- Putting it Together: Architecting a DNN Accelerator -- Design Flow -- Target Specs and Constraints Electronic books Kwon, Hyoukjun Verfasser aut Parashar, Angshuman Verfasser aut Pellauer, Michael Verfasser aut Samajdar, Ananda Verfasser aut Erscheint auch als Druck-Ausgabe, Hardcover 978-1-68173-871-0 Erscheint auch als Druck-Ausgabe, Paperback 978-1-68173-869-7 Synthesis lectures on computer architecture #52 (DE-604)BV047042546 52 |
spellingShingle | Krishna, Tushar Kwon, Hyoukjun Parashar, Angshuman Pellauer, Michael Samajdar, Ananda Data orchestration in deep learning accelerators Synthesis lectures on computer architecture |
title | Data orchestration in deep learning accelerators |
title_auth | Data orchestration in deep learning accelerators |
title_exact_search | Data orchestration in deep learning accelerators |
title_exact_search_txtP | Data orchestration in deep learning accelerators |
title_full | Data orchestration in deep learning accelerators Tushar Krishna (Georgia Institute of Technology), Hyoukjun Kwon (Georgia Institute of Technology), Angshuman Parashar (NVIDIA), Michael Pellauer (NVIDIA), Ananda Samajdar (Georgia Institute of Technology) |
title_fullStr | Data orchestration in deep learning accelerators Tushar Krishna (Georgia Institute of Technology), Hyoukjun Kwon (Georgia Institute of Technology), Angshuman Parashar (NVIDIA), Michael Pellauer (NVIDIA), Ananda Samajdar (Georgia Institute of Technology) |
title_full_unstemmed | Data orchestration in deep learning accelerators Tushar Krishna (Georgia Institute of Technology), Hyoukjun Kwon (Georgia Institute of Technology), Angshuman Parashar (NVIDIA), Michael Pellauer (NVIDIA), Ananda Samajdar (Georgia Institute of Technology) |
title_short | Data orchestration in deep learning accelerators |
title_sort | data orchestration in deep learning accelerators |
volume_link | (DE-604)BV047042546 |
work_keys_str_mv | AT krishnatushar dataorchestrationindeeplearningaccelerators AT kwonhyoukjun dataorchestrationindeeplearningaccelerators AT parasharangshuman dataorchestrationindeeplearningaccelerators AT pellauermichael dataorchestrationindeeplearningaccelerators AT samajdarananda dataorchestrationindeeplearningaccelerators |