Methods of shape-preserving spline approximation:
This book aims to develop algorithms of shape-preserving spline approximation for curves/surfaces with automatic choice of the tension parameters. The resulting curves/surfaces retain geometric properties of the initial data, such as positivity, monotonicity, convexity, linear and planar sections. T...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
c2000
|
Schlagworte: | |
Online-Zugang: | FHN01 Volltext |
Zusammenfassung: | This book aims to develop algorithms of shape-preserving spline approximation for curves/surfaces with automatic choice of the tension parameters. The resulting curves/surfaces retain geometric properties of the initial data, such as positivity, monotonicity, convexity, linear and planar sections. The main tools used are generalized tension splines and B-splines. A difference method for constructing tension splines is also developed which permits one to avoid the computation of hyperbolic functions and provides other computational advantages. The algorithms of monotonizing parametrization described improve an adequate representation of the resulting shape-preserving curves/surfaces. Detailed descriptions of algorithms are given, with a strong emphasis on their computer implementation. These algorithms can be applied to solve many problems in computer-aided geometric design |
Beschreibung: | xvi, 338 p. ill |
ISBN: | 9789812813381 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044636355 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 171120s2000 |||| o||u| ||||||eng d | ||
020 | |a 9789812813381 |9 978-981-281-338-1 | ||
024 | 7 | |a 10.1142/4172 |2 doi | |
035 | |a (ZDB-124-WOP)00003904 | ||
035 | |a (OCoLC)855562861 | ||
035 | |a (DE-599)BVBBV044636355 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-92 | ||
082 | 0 | |a 511.422 |2 22 | |
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Kvasov, B. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Methods of shape-preserving spline approximation |c Boris I. Kvasov |
246 | 1 | 3 | |a Shape-preserving spline approximation |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c c2000 | |
300 | |a xvi, 338 p. |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book aims to develop algorithms of shape-preserving spline approximation for curves/surfaces with automatic choice of the tension parameters. The resulting curves/surfaces retain geometric properties of the initial data, such as positivity, monotonicity, convexity, linear and planar sections. The main tools used are generalized tension splines and B-splines. A difference method for constructing tension splines is also developed which permits one to avoid the computation of hyperbolic functions and provides other computational advantages. The algorithms of monotonizing parametrization described improve an adequate representation of the resulting shape-preserving curves/surfaces. Detailed descriptions of algorithms are given, with a strong emphasis on their computer implementation. These algorithms can be applied to solve many problems in computer-aided geometric design | ||
650 | 4 | |a Spline theory | |
650 | 4 | |a Approximation theory | |
650 | 4 | |a Surfaces / Computer simulation | |
650 | 4 | |a Curves / Computer simulation | |
650 | 0 | 7 | |a Spline-Approximation |0 (DE-588)4182394-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline-Approximation |0 (DE-588)4182394-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789810240103 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9810240104 |
856 | 4 | 0 | |u http://www.worldscientific.com/worldscibooks/10.1142/4172#t=toc |x Verlag |z URL des Erstveroeffentlichers |3 Volltext |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-030034326 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.worldscientific.com/worldscibooks/10.1142/4172#t=toc |l FHN01 |p ZDB-124-WOP |q FHN_PDA_WOP |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178050608267264 |
---|---|
any_adam_object | |
author | Kvasov, B. I. |
author_facet | Kvasov, B. I. |
author_role | aut |
author_sort | Kvasov, B. I. |
author_variant | b i k bi bik |
building | Verbundindex |
bvnumber | BV044636355 |
classification_rvk | SK 470 |
collection | ZDB-124-WOP |
ctrlnum | (ZDB-124-WOP)00003904 (OCoLC)855562861 (DE-599)BVBBV044636355 |
dewey-full | 511.422 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.422 |
dewey-search | 511.422 |
dewey-sort | 3511.422 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02659nmm a2200481zc 4500</leader><controlfield tag="001">BV044636355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">171120s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812813381</subfield><subfield code="9">978-981-281-338-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/4172</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-124-WOP)00003904</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)855562861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044636355</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.422</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kvasov, B. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods of shape-preserving spline approximation</subfield><subfield code="c">Boris I. Kvasov</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Shape-preserving spline approximation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">c2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 338 p.</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book aims to develop algorithms of shape-preserving spline approximation for curves/surfaces with automatic choice of the tension parameters. The resulting curves/surfaces retain geometric properties of the initial data, such as positivity, monotonicity, convexity, linear and planar sections. The main tools used are generalized tension splines and B-splines. A difference method for constructing tension splines is also developed which permits one to avoid the computation of hyperbolic functions and provides other computational advantages. The algorithms of monotonizing parametrization described improve an adequate representation of the resulting shape-preserving curves/surfaces. Detailed descriptions of algorithms are given, with a strong emphasis on their computer implementation. These algorithms can be applied to solve many problems in computer-aided geometric design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces / Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves / Computer simulation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789810240103</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9810240104</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4172#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveroeffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030034326</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.worldscientific.com/worldscibooks/10.1142/4172#t=toc</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">FHN_PDA_WOP</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044636355 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:57:49Z |
institution | BVB |
isbn | 9789812813381 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030034326 |
oclc_num | 855562861 |
open_access_boolean | |
owner | DE-92 |
owner_facet | DE-92 |
physical | xvi, 338 p. ill |
psigel | ZDB-124-WOP ZDB-124-WOP FHN_PDA_WOP |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Kvasov, B. I. Verfasser aut Methods of shape-preserving spline approximation Boris I. Kvasov Shape-preserving spline approximation Singapore World Scientific Pub. Co. c2000 xvi, 338 p. ill txt rdacontent c rdamedia cr rdacarrier This book aims to develop algorithms of shape-preserving spline approximation for curves/surfaces with automatic choice of the tension parameters. The resulting curves/surfaces retain geometric properties of the initial data, such as positivity, monotonicity, convexity, linear and planar sections. The main tools used are generalized tension splines and B-splines. A difference method for constructing tension splines is also developed which permits one to avoid the computation of hyperbolic functions and provides other computational advantages. The algorithms of monotonizing parametrization described improve an adequate representation of the resulting shape-preserving curves/surfaces. Detailed descriptions of algorithms are given, with a strong emphasis on their computer implementation. These algorithms can be applied to solve many problems in computer-aided geometric design Spline theory Approximation theory Surfaces / Computer simulation Curves / Computer simulation Spline-Approximation (DE-588)4182394-1 gnd rswk-swf Spline-Approximation (DE-588)4182394-1 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 9789810240103 Erscheint auch als Druck-Ausgabe 9810240104 http://www.worldscientific.com/worldscibooks/10.1142/4172#t=toc Verlag URL des Erstveroeffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kvasov, B. I. Methods of shape-preserving spline approximation Spline theory Approximation theory Surfaces / Computer simulation Curves / Computer simulation Spline-Approximation (DE-588)4182394-1 gnd |
subject_GND | (DE-588)4182394-1 |
title | Methods of shape-preserving spline approximation |
title_alt | Shape-preserving spline approximation |
title_auth | Methods of shape-preserving spline approximation |
title_exact_search | Methods of shape-preserving spline approximation |
title_full | Methods of shape-preserving spline approximation Boris I. Kvasov |
title_fullStr | Methods of shape-preserving spline approximation Boris I. Kvasov |
title_full_unstemmed | Methods of shape-preserving spline approximation Boris I. Kvasov |
title_short | Methods of shape-preserving spline approximation |
title_sort | methods of shape preserving spline approximation |
topic | Spline theory Approximation theory Surfaces / Computer simulation Curves / Computer simulation Spline-Approximation (DE-588)4182394-1 gnd |
topic_facet | Spline theory Approximation theory Surfaces / Computer simulation Curves / Computer simulation Spline-Approximation |
url | http://www.worldscientific.com/worldscibooks/10.1142/4172#t=toc |
work_keys_str_mv | AT kvasovbi methodsofshapepreservingsplineapproximation AT kvasovbi shapepreservingsplineapproximation |