Extending Excel with Python and R: unlock the potential of analytics languages for advanced data manipulation and visualization
Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insight...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK
Packt Publishing
April 2024
|
Ausgabe: | 1st edition |
Schlagworte: | |
Online-Zugang: | DE-1050 DE-706 Volltext |
Zusammenfassung: | Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description For businesses, data analysis and visualization are crucial for informed decision-making; however, Excel's limitations can make these tasks time-consuming and challenging. Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics, the company behind the ownR platform engineering solution for R, Python, and other data science languages. |
Beschreibung: | 1 Online-Ressource (xvii, 325 Seiten) |
ISBN: | 9781804615546 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049792849 | ||
003 | DE-604 | ||
005 | 20241104 | ||
007 | cr|uuu---uuuuu | ||
008 | 240723s2024 |||| o||u| ||||||eng d | ||
020 | |a 9781804615546 |9 978-1-80461-554-6 | ||
035 | |a (ZDB-221-PDA)9781804615546 | ||
035 | |a (OCoLC)1450742768 | ||
035 | |a (DE-599)BVBBV049792849 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-706 | ||
100 | 1 | |a Sanderson, Steven |e Verfasser |4 aut | |
245 | 1 | 0 | |a Extending Excel with Python and R |b unlock the potential of analytics languages for advanced data manipulation and visualization |c Steven Sanderson, David Kun |
250 | |a 1st edition | ||
264 | 1 | |a Birmingham, UK |b Packt Publishing |c April 2024 | |
300 | |a 1 Online-Ressource (xvii, 325 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Title Page -- Copyright and Credit -- Dedicated -- Contributors -- Table of Contents -- Preface -- Part 1: The Basics -- Reading and Writing Excel Files from R and Python -- Chapter 1: Reading Excel Spreadsheets -- Technical requirements -- Working with R packages for Excel manipulation -- Reading Excel files to R -- Installing and loading libraries -- Reading multiple sheets with readxl and a custom function -- Python packages for Excel manipulation -- Python packages for Excel manipulation -- Considerations -- Opening an Excel sheet from Python and reading the data -- Using pandas | |
505 | 8 | |a Using openpyxl -- Reading in multiple sheets with Python (openpyxl and custom functions) -- The importance of reading multiple sheets -- Using openpyxl to access sheets -- Reading data from each sheet -- Retrieving sheet data with openpyxl -- Combining data from multiple sheets -- Custom function for reading multiple sheets -- Customizing the code -- Summary -- Chapter 2: Writing Excel Spreadsheets -- Technical requirements -- Packages to write into Excel files -- writexl -- openxlsx -- xlsx -- A comprehensive recap and insights -- Creating and manipulating Excel sheets using Python | |
505 | 8 | |a Why export data to Excel? -- Keeping it simple -- exporting data to Excel with pandas -- Advanced mode -- openpyxl for Excel manipulation -- Creating a new workbook -- Adding sheets to the workbook -- Deleting a sheet -- Manipulating an existing workbook -- Choosing between openpyxl and pandas -- Other alternatives -- Summary -- Chapter 3: Executing VBA Code from R and Python -- Technical requirements -- Installing and explaining the RDCOMClient R library -- Installing RDCOMClient -- Executing sample VBA with RDCOMClient -- Integrating VBA with Python using pywin32 | |
505 | 8 | |a Why execute VBA code from Python? -- Setting up the environment -- Error handling with the environment setup -- Writing and executing VBA code -- Automating Excel tasks -- Pros and cons of executing VBA from Python -- Summary -- Chapter 4: Automating Further -- Task Scheduling and Email -- Technical requirements -- Installing and understanding the tasksheduleR library -- Creating sample scripts -- RDCOMClient for Outlook -- Using the Microsoft365R and blastula packages -- Microsoft365R -- The blastula package -- Scheduling Python scripts -- Introduction to Python script scheduling | |
505 | 8 | |a Built-in scheduling options -- Third-party scheduling libraries -- Best practices and considerations for robust automation -- Email notifications and automation with Python -- Introduction to email notifications in Python -- Setting up email services -- Sending basic emails -- Sending email notifications for script status -- Summary -- Part 2: Making It Pretty -- Formatting, Graphs, and More -- Chapter 5: Formatting Your Excel Sheet -- Technical requirements -- Installing and using styledTables in R -- Installing and using basictabler in R -- Advanced options for formatting with Python | |
520 | |a Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description For businesses, data analysis and visualization are crucial for informed decision-making; however, Excel's limitations can make these tasks time-consuming and challenging. Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics, the company behind the ownR platform engineering solution for R, Python, and other data science languages. | ||
650 | 4 | |a Data mining | |
650 | 4 | |a Data mining / Computer programs | |
700 | 1 | |a Kun, David |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-80461-069-5 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0007149.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-221-PDA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035133590 | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=31255746 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007149.html |l DE-706 |p ZDB-221-PDA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1814797018149683200 |
---|---|
adam_text | |
any_adam_object | |
author | Sanderson, Steven Kun, David |
author_facet | Sanderson, Steven Kun, David |
author_role | aut aut |
author_sort | Sanderson, Steven |
author_variant | s s ss d k dk |
building | Verbundindex |
bvnumber | BV049792849 |
collection | ZDB-30-PQE ZDB-221-PDA |
contents | Cover -- Title Page -- Copyright and Credit -- Dedicated -- Contributors -- Table of Contents -- Preface -- Part 1: The Basics -- Reading and Writing Excel Files from R and Python -- Chapter 1: Reading Excel Spreadsheets -- Technical requirements -- Working with R packages for Excel manipulation -- Reading Excel files to R -- Installing and loading libraries -- Reading multiple sheets with readxl and a custom function -- Python packages for Excel manipulation -- Python packages for Excel manipulation -- Considerations -- Opening an Excel sheet from Python and reading the data -- Using pandas Using openpyxl -- Reading in multiple sheets with Python (openpyxl and custom functions) -- The importance of reading multiple sheets -- Using openpyxl to access sheets -- Reading data from each sheet -- Retrieving sheet data with openpyxl -- Combining data from multiple sheets -- Custom function for reading multiple sheets -- Customizing the code -- Summary -- Chapter 2: Writing Excel Spreadsheets -- Technical requirements -- Packages to write into Excel files -- writexl -- openxlsx -- xlsx -- A comprehensive recap and insights -- Creating and manipulating Excel sheets using Python Why export data to Excel? -- Keeping it simple -- exporting data to Excel with pandas -- Advanced mode -- openpyxl for Excel manipulation -- Creating a new workbook -- Adding sheets to the workbook -- Deleting a sheet -- Manipulating an existing workbook -- Choosing between openpyxl and pandas -- Other alternatives -- Summary -- Chapter 3: Executing VBA Code from R and Python -- Technical requirements -- Installing and explaining the RDCOMClient R library -- Installing RDCOMClient -- Executing sample VBA with RDCOMClient -- Integrating VBA with Python using pywin32 Why execute VBA code from Python? -- Setting up the environment -- Error handling with the environment setup -- Writing and executing VBA code -- Automating Excel tasks -- Pros and cons of executing VBA from Python -- Summary -- Chapter 4: Automating Further -- Task Scheduling and Email -- Technical requirements -- Installing and understanding the tasksheduleR library -- Creating sample scripts -- RDCOMClient for Outlook -- Using the Microsoft365R and blastula packages -- Microsoft365R -- The blastula package -- Scheduling Python scripts -- Introduction to Python script scheduling Built-in scheduling options -- Third-party scheduling libraries -- Best practices and considerations for robust automation -- Email notifications and automation with Python -- Introduction to email notifications in Python -- Setting up email services -- Sending basic emails -- Sending email notifications for script status -- Summary -- Part 2: Making It Pretty -- Formatting, Graphs, and More -- Chapter 5: Formatting Your Excel Sheet -- Technical requirements -- Installing and using styledTables in R -- Installing and using basictabler in R -- Advanced options for formatting with Python |
ctrlnum | (ZDB-221-PDA)9781804615546 (OCoLC)1450742768 (DE-599)BVBBV049792849 |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV049792849</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241104</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240723s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781804615546</subfield><subfield code="9">978-1-80461-554-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PDA)9781804615546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1450742768</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049792849</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sanderson, Steven</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extending Excel with Python and R</subfield><subfield code="b">unlock the potential of analytics languages for advanced data manipulation and visualization</subfield><subfield code="c">Steven Sanderson, David Kun</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">April 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 325 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright and Credit -- Dedicated -- Contributors -- Table of Contents -- Preface -- Part 1: The Basics -- Reading and Writing Excel Files from R and Python -- Chapter 1: Reading Excel Spreadsheets -- Technical requirements -- Working with R packages for Excel manipulation -- Reading Excel files to R -- Installing and loading libraries -- Reading multiple sheets with readxl and a custom function -- Python packages for Excel manipulation -- Python packages for Excel manipulation -- Considerations -- Opening an Excel sheet from Python and reading the data -- Using pandas</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Using openpyxl -- Reading in multiple sheets with Python (openpyxl and custom functions) -- The importance of reading multiple sheets -- Using openpyxl to access sheets -- Reading data from each sheet -- Retrieving sheet data with openpyxl -- Combining data from multiple sheets -- Custom function for reading multiple sheets -- Customizing the code -- Summary -- Chapter 2: Writing Excel Spreadsheets -- Technical requirements -- Packages to write into Excel files -- writexl -- openxlsx -- xlsx -- A comprehensive recap and insights -- Creating and manipulating Excel sheets using Python</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Why export data to Excel? -- Keeping it simple -- exporting data to Excel with pandas -- Advanced mode -- openpyxl for Excel manipulation -- Creating a new workbook -- Adding sheets to the workbook -- Deleting a sheet -- Manipulating an existing workbook -- Choosing between openpyxl and pandas -- Other alternatives -- Summary -- Chapter 3: Executing VBA Code from R and Python -- Technical requirements -- Installing and explaining the RDCOMClient R library -- Installing RDCOMClient -- Executing sample VBA with RDCOMClient -- Integrating VBA with Python using pywin32</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Why execute VBA code from Python? -- Setting up the environment -- Error handling with the environment setup -- Writing and executing VBA code -- Automating Excel tasks -- Pros and cons of executing VBA from Python -- Summary -- Chapter 4: Automating Further -- Task Scheduling and Email -- Technical requirements -- Installing and understanding the tasksheduleR library -- Creating sample scripts -- RDCOMClient for Outlook -- Using the Microsoft365R and blastula packages -- Microsoft365R -- The blastula package -- Scheduling Python scripts -- Introduction to Python script scheduling</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Built-in scheduling options -- Third-party scheduling libraries -- Best practices and considerations for robust automation -- Email notifications and automation with Python -- Introduction to email notifications in Python -- Setting up email services -- Sending basic emails -- Sending email notifications for script status -- Summary -- Part 2: Making It Pretty -- Formatting, Graphs, and More -- Chapter 5: Formatting Your Excel Sheet -- Technical requirements -- Installing and using styledTables in R -- Installing and using basictabler in R -- Advanced options for formatting with Python</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description For businesses, data analysis and visualization are crucial for informed decision-making; however, Excel's limitations can make these tasks time-consuming and challenging. Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics, the company behind the ownR platform engineering solution for R, Python, and other data science languages.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining / Computer programs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kun, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-80461-069-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007149.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035133590</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=31255746</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007149.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049792849 |
illustrated | Not Illustrated |
indexdate | 2024-11-04T13:01:45Z |
institution | BVB |
isbn | 9781804615546 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035133590 |
oclc_num | 1450742768 |
open_access_boolean | |
owner | DE-1050 DE-706 |
owner_facet | DE-1050 DE-706 |
physical | 1 Online-Ressource (xvii, 325 Seiten) |
psigel | ZDB-30-PQE ZDB-221-PDA ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing |
record_format | marc |
spelling | Sanderson, Steven Verfasser aut Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization Steven Sanderson, David Kun 1st edition Birmingham, UK Packt Publishing April 2024 1 Online-Ressource (xvii, 325 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright and Credit -- Dedicated -- Contributors -- Table of Contents -- Preface -- Part 1: The Basics -- Reading and Writing Excel Files from R and Python -- Chapter 1: Reading Excel Spreadsheets -- Technical requirements -- Working with R packages for Excel manipulation -- Reading Excel files to R -- Installing and loading libraries -- Reading multiple sheets with readxl and a custom function -- Python packages for Excel manipulation -- Python packages for Excel manipulation -- Considerations -- Opening an Excel sheet from Python and reading the data -- Using pandas Using openpyxl -- Reading in multiple sheets with Python (openpyxl and custom functions) -- The importance of reading multiple sheets -- Using openpyxl to access sheets -- Reading data from each sheet -- Retrieving sheet data with openpyxl -- Combining data from multiple sheets -- Custom function for reading multiple sheets -- Customizing the code -- Summary -- Chapter 2: Writing Excel Spreadsheets -- Technical requirements -- Packages to write into Excel files -- writexl -- openxlsx -- xlsx -- A comprehensive recap and insights -- Creating and manipulating Excel sheets using Python Why export data to Excel? -- Keeping it simple -- exporting data to Excel with pandas -- Advanced mode -- openpyxl for Excel manipulation -- Creating a new workbook -- Adding sheets to the workbook -- Deleting a sheet -- Manipulating an existing workbook -- Choosing between openpyxl and pandas -- Other alternatives -- Summary -- Chapter 3: Executing VBA Code from R and Python -- Technical requirements -- Installing and explaining the RDCOMClient R library -- Installing RDCOMClient -- Executing sample VBA with RDCOMClient -- Integrating VBA with Python using pywin32 Why execute VBA code from Python? -- Setting up the environment -- Error handling with the environment setup -- Writing and executing VBA code -- Automating Excel tasks -- Pros and cons of executing VBA from Python -- Summary -- Chapter 4: Automating Further -- Task Scheduling and Email -- Technical requirements -- Installing and understanding the tasksheduleR library -- Creating sample scripts -- RDCOMClient for Outlook -- Using the Microsoft365R and blastula packages -- Microsoft365R -- The blastula package -- Scheduling Python scripts -- Introduction to Python script scheduling Built-in scheduling options -- Third-party scheduling libraries -- Best practices and considerations for robust automation -- Email notifications and automation with Python -- Introduction to email notifications in Python -- Setting up email services -- Sending basic emails -- Sending email notifications for script status -- Summary -- Part 2: Making It Pretty -- Formatting, Graphs, and More -- Chapter 5: Formatting Your Excel Sheet -- Technical requirements -- Installing and using styledTables in R -- Installing and using basictabler in R -- Advanced options for formatting with Python Seamlessly integrate the Python and R programming languages with spreadsheet-based data analysis to maximize productivity Key Features Perform advanced data analysis and visualization techniques with R and Python on Excel data Use exploratory data analysis and pivot table analysis for deeper insights into your data Integrate R and Python code directly into Excel using VBA or API endpoints Purchase of the print or Kindle book includes a free PDF eBook Book Description For businesses, data analysis and visualization are crucial for informed decision-making; however, Excel's limitations can make these tasks time-consuming and challenging. Extending Excel with Python and R is a game changer resource written by experts Steven Sanderson, the author of the healthyverse suite of R packages, and David Kun, co-founder of Functional Analytics, the company behind the ownR platform engineering solution for R, Python, and other data science languages. Data mining Data mining / Computer programs Kun, David Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-80461-069-5 https://portal.igpublish.com/iglibrary/search/PACKT0007149.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sanderson, Steven Kun, David Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization Cover -- Title Page -- Copyright and Credit -- Dedicated -- Contributors -- Table of Contents -- Preface -- Part 1: The Basics -- Reading and Writing Excel Files from R and Python -- Chapter 1: Reading Excel Spreadsheets -- Technical requirements -- Working with R packages for Excel manipulation -- Reading Excel files to R -- Installing and loading libraries -- Reading multiple sheets with readxl and a custom function -- Python packages for Excel manipulation -- Python packages for Excel manipulation -- Considerations -- Opening an Excel sheet from Python and reading the data -- Using pandas Using openpyxl -- Reading in multiple sheets with Python (openpyxl and custom functions) -- The importance of reading multiple sheets -- Using openpyxl to access sheets -- Reading data from each sheet -- Retrieving sheet data with openpyxl -- Combining data from multiple sheets -- Custom function for reading multiple sheets -- Customizing the code -- Summary -- Chapter 2: Writing Excel Spreadsheets -- Technical requirements -- Packages to write into Excel files -- writexl -- openxlsx -- xlsx -- A comprehensive recap and insights -- Creating and manipulating Excel sheets using Python Why export data to Excel? -- Keeping it simple -- exporting data to Excel with pandas -- Advanced mode -- openpyxl for Excel manipulation -- Creating a new workbook -- Adding sheets to the workbook -- Deleting a sheet -- Manipulating an existing workbook -- Choosing between openpyxl and pandas -- Other alternatives -- Summary -- Chapter 3: Executing VBA Code from R and Python -- Technical requirements -- Installing and explaining the RDCOMClient R library -- Installing RDCOMClient -- Executing sample VBA with RDCOMClient -- Integrating VBA with Python using pywin32 Why execute VBA code from Python? -- Setting up the environment -- Error handling with the environment setup -- Writing and executing VBA code -- Automating Excel tasks -- Pros and cons of executing VBA from Python -- Summary -- Chapter 4: Automating Further -- Task Scheduling and Email -- Technical requirements -- Installing and understanding the tasksheduleR library -- Creating sample scripts -- RDCOMClient for Outlook -- Using the Microsoft365R and blastula packages -- Microsoft365R -- The blastula package -- Scheduling Python scripts -- Introduction to Python script scheduling Built-in scheduling options -- Third-party scheduling libraries -- Best practices and considerations for robust automation -- Email notifications and automation with Python -- Introduction to email notifications in Python -- Setting up email services -- Sending basic emails -- Sending email notifications for script status -- Summary -- Part 2: Making It Pretty -- Formatting, Graphs, and More -- Chapter 5: Formatting Your Excel Sheet -- Technical requirements -- Installing and using styledTables in R -- Installing and using basictabler in R -- Advanced options for formatting with Python Data mining Data mining / Computer programs |
title | Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization |
title_auth | Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization |
title_exact_search | Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization |
title_full | Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization Steven Sanderson, David Kun |
title_fullStr | Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization Steven Sanderson, David Kun |
title_full_unstemmed | Extending Excel with Python and R unlock the potential of analytics languages for advanced data manipulation and visualization Steven Sanderson, David Kun |
title_short | Extending Excel with Python and R |
title_sort | extending excel with python and r unlock the potential of analytics languages for advanced data manipulation and visualization |
title_sub | unlock the potential of analytics languages for advanced data manipulation and visualization |
topic | Data mining Data mining / Computer programs |
topic_facet | Data mining Data mining / Computer programs |
url | https://portal.igpublish.com/iglibrary/search/PACKT0007149.html |
work_keys_str_mv | AT sandersonsteven extendingexcelwithpythonandrunlockthepotentialofanalyticslanguagesforadvanceddatamanipulationandvisualization AT kundavid extendingexcelwithpythonandrunlockthepotentialofanalyticslanguagesforadvanceddatamanipulationandvisualization |