Same same but different: a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg
2022
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048518973 | ||
003 | DE-604 | ||
005 | 20230929 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 221018s2022 gw |||| o||u| ||||||eng d | ||
015 | |a 22,O10 |2 dnb | ||
016 | 7 | |a 1268713104 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-201303 |2 urn | |
035 | |a (OCoLC)1349535558 | ||
035 | |a (DE-599)DNB1268713104 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 1\p |a 616.075 |2 23ksdnb | ||
084 | |8 2\p |a 610 |2 23sdnb | ||
100 | 1 | |a Kubach, Joshua |0 (DE-588)1270518933 |4 aut | |
245 | 1 | 0 | |a Same same but different |b a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |c vorgelegt von Joshua Kubach |
264 | 1 | |a Erlangen ; Nürnberg |b Friedrich-Alexander-Universität Erlangen-Nürnberg |c 2022 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2022 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |a Histopathologie |0 (DE-588)4072532-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Convolutional Neural Network |0 (DE-588)1209706350 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gehirn |0 (DE-588)4019752-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hirnrinde |0 (DE-588)4129358-7 |2 gnd |9 rswk-swf |
653 | |a brain, convolutional neural network, cortical malformations, deep learning, digital pathology, epilepsy | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Gehirn |0 (DE-588)4019752-9 |D s |
689 | 0 | 1 | |a Convolutional Neural Network |0 (DE-588)1209706350 |D s |
689 | 0 | 2 | |a Hirnrinde |0 (DE-588)4129358-7 |D s |
689 | 0 | 3 | |a Histopathologie |0 (DE-588)4072532-7 |D s |
689 | 0 | 4 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 5 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 6 | |a Merkmalsextraktion |0 (DE-588)4314440-8 |D s |
689 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 0 | 8 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | 9 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-201303 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1268713104/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://open.fau.de/handle/openfau/20130 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033895896 | ||
883 | 0 | |8 1\p |a emakn |c 0,10914 |d 20220924 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,50171 |d 20220924 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20220923 |q DE-101 |u https://d-nb.info/provenance/plan#npi |
Datensatz im Suchindex
_version_ | 1804184503769366528 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kubach, Joshua |
author_GND | (DE-588)1270518933 |
author_facet | Kubach, Joshua |
author_role | aut |
author_sort | Kubach, Joshua |
author_variant | j k jk |
building | Verbundindex |
bvnumber | BV048518973 |
collection | ebook |
ctrlnum | (OCoLC)1349535558 (DE-599)DNB1268713104 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03526nmm a2200709zc 4500</leader><controlfield tag="001">BV048518973</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230929 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221018s2022 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,O10</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1268713104</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-201303</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1349535558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1268713104</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">616.075</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kubach, Joshua</subfield><subfield code="0">(DE-588)1270518933</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Same same but different</subfield><subfield code="b">a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations</subfield><subfield code="c">vorgelegt von Joshua Kubach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="b">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2022</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Histopathologie</subfield><subfield code="0">(DE-588)4072532-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Convolutional Neural Network</subfield><subfield code="0">(DE-588)1209706350</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hirnrinde</subfield><subfield code="0">(DE-588)4129358-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">brain, convolutional neural network, cortical malformations, deep learning, digital pathology, epilepsy</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gehirn</subfield><subfield code="0">(DE-588)4019752-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Convolutional Neural Network</subfield><subfield code="0">(DE-588)1209706350</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hirnrinde</subfield><subfield code="0">(DE-588)4129358-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Histopathologie</subfield><subfield code="0">(DE-588)4072532-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="8"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="9"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-201303</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1268713104/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://open.fau.de/handle/openfau/20130</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033895896</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,10914</subfield><subfield code="d">20220924</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,50171</subfield><subfield code="d">20220924</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20220923</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048518973 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:49:21Z |
indexdate | 2024-07-10T09:40:23Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033895896 |
oclc_num | 1349535558 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Friedrich-Alexander-Universität Erlangen-Nürnberg |
record_format | marc |
spelling | Kubach, Joshua (DE-588)1270518933 aut Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations vorgelegt von Joshua Kubach Erlangen ; Nürnberg Friedrich-Alexander-Universität Erlangen-Nürnberg 2022 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg 2022 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager Histopathologie (DE-588)4072532-7 gnd rswk-swf Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Deep learning (DE-588)1135597375 gnd rswk-swf Convolutional Neural Network (DE-588)1209706350 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Merkmalsextraktion (DE-588)4314440-8 gnd rswk-swf Gehirn (DE-588)4019752-9 gnd rswk-swf Automatische Klassifikation (DE-588)4120957-6 gnd rswk-swf Hirnrinde (DE-588)4129358-7 gnd rswk-swf brain, convolutional neural network, cortical malformations, deep learning, digital pathology, epilepsy (DE-588)4113937-9 Hochschulschrift gnd-content Gehirn (DE-588)4019752-9 s Convolutional Neural Network (DE-588)1209706350 s Hirnrinde (DE-588)4129358-7 s Histopathologie (DE-588)4072532-7 s Bildverarbeitung (DE-588)4006684-8 s Maschinelles Lernen (DE-588)4193754-5 s Merkmalsextraktion (DE-588)4314440-8 s Bildgebendes Verfahren (DE-588)4006617-4 s Deep learning (DE-588)1135597375 s Automatische Klassifikation (DE-588)4120957-6 s DE-604 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-201303 Resolving-System kostenfrei Volltext https://d-nb.info/1268713104/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext application/pdf https://open.fau.de/handle/openfau/20130 Verlag kostenfrei Volltext 1\p emakn 0,10914 20220924 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,50171 20220924 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20220923 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Kubach, Joshua Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations Histopathologie (DE-588)4072532-7 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd Bildverarbeitung (DE-588)4006684-8 gnd Deep learning (DE-588)1135597375 gnd Convolutional Neural Network (DE-588)1209706350 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Gehirn (DE-588)4019752-9 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Hirnrinde (DE-588)4129358-7 gnd |
subject_GND | (DE-588)4072532-7 (DE-588)4006617-4 (DE-588)4006684-8 (DE-588)1135597375 (DE-588)1209706350 (DE-588)4193754-5 (DE-588)4314440-8 (DE-588)4019752-9 (DE-588)4120957-6 (DE-588)4129358-7 (DE-588)4113937-9 |
title | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |
title_auth | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |
title_exact_search | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |
title_exact_search_txtP | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |
title_full | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations vorgelegt von Joshua Kubach |
title_fullStr | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations vorgelegt von Joshua Kubach |
title_full_unstemmed | Same same but different a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations vorgelegt von Joshua Kubach |
title_short | Same same but different |
title_sort | same same but different a web based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |
title_sub | a Web-based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations |
topic | Histopathologie (DE-588)4072532-7 gnd Bildgebendes Verfahren (DE-588)4006617-4 gnd Bildverarbeitung (DE-588)4006684-8 gnd Deep learning (DE-588)1135597375 gnd Convolutional Neural Network (DE-588)1209706350 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Merkmalsextraktion (DE-588)4314440-8 gnd Gehirn (DE-588)4019752-9 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Hirnrinde (DE-588)4129358-7 gnd |
topic_facet | Histopathologie Bildgebendes Verfahren Bildverarbeitung Deep learning Convolutional Neural Network Maschinelles Lernen Merkmalsextraktion Gehirn Automatische Klassifikation Hirnrinde Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-201303 https://d-nb.info/1268713104/34 https://open.fau.de/handle/openfau/20130 |
work_keys_str_mv | AT kubachjoshua samesamebutdifferentawebbaseddeeplearningapplicationrevealedclassifyingfeaturesforthehistopathologicdistinctionofcorticalmalformations |