Machine learning for transportation research and applications:

Transportation issues are often too complicated to be addressed by conventional parametric methods. Increasing data availability and recent advancements in machine learning provide new methods to tackle the challenging transportation problems. Readers will learn how to develop and apply different ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, Yinhai (VerfasserIn), Cui, Zhiyong (VerfasserIn), Ke, Ruimin (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Philadelphia Elsevier [2023]
Schlagworte:
Online-Zugang:UEI03
Zusammenfassung:Transportation issues are often too complicated to be addressed by conventional parametric methods. Increasing data availability and recent advancements in machine learning provide new methods to tackle the challenging transportation problems. Readers will learn how to develop and apply different types of machine learning models to transportation related problems. Example applications include transportation data generations, traffic sensing, transportation mode recognition, transportation system management and control, traffic flow prediction, and traffic safety analysis.
Beschreibung:Part One: Overview 1. General Introduction and Overview 2. Fundamental Mathematics 3. Machine Learning Basics Part Two: Methodologies and Applications 4. Classical ML Methods 5. Convolutional Neural Network 6. Graph Neural Network 7. Sequence Modeling 8. Probabilistic Models 9. Reinforcement Learning 10. Generative Models 11. Meta/Transfer Learning Part Three: Future Research and Applications The Future of Transportation and AI
Beschreibung:1 Online-Ressource (xi, 239 Seiten)
ISBN:9780323996808
0323961266

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!