Introduction to network traffic flow theory: principles, concepts, models, and methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States
Elsevier
2021
|
Schlagworte: | |
Online-Zugang: | DE-91 |
Beschreibung: | 1 Online-Ressource Illustrationen, Diagramme |
ISBN: | 9780128158418 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048224672 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2021 |||| o||u| ||||||eng d | ||
020 | |a 9780128158418 |9 978-0-12-815841-8 | ||
035 | |a (ZDB-30-PQE)EBC6550933 | ||
035 | |a (ZDB-30-PAD)EBC6550933 | ||
035 | |a (ZDB-89-EBL)EBL6550933 | ||
035 | |a (OCoLC)1246581339 | ||
035 | |a (DE-599)BVBBV048224672 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 388.4131 | |
084 | |a RPL 860 |2 stub | ||
084 | |a BAU 850 |2 stub | ||
100 | 1 | |a Jin, Wen-Long |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to network traffic flow theory |b principles, concepts, models, and methods |c Wen-Long Jin |
264 | 1 | |a Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States |b Elsevier |c 2021 | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Front Cover -- Introduction to Network Traffic Flow Theory -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Notations -- Part I Basics -- 1 Introduction -- 1.1 Transportation system analysis -- 1.2 Traffic flow theory -- 1.3 Principles, concepts, models, and methods in traffic flow theory -- 1.4 A brief overview of the book -- Notes -- Problems -- 2 Definitions of variables -- 2.1 Three traffic scenarios and space-time diagrams -- 2.2 The three-dimensional representation of traffic flow and primary variables -- 2.3 More derived variables in three coordinates -- 2.3.1 In the flow coordinates -- 2.3.2 In the trajectory coordinates -- 2.3.3 In the schedule coordinates -- 2.3.4 Higher-order derivatives of the primary variables -- 2.3.5 Relationships among the secondary variables -- 2.4 Detection -- 2.4.1 Edie's formulas -- 2.4.2 Detectors -- 2.5 Multi-commodity traffic on a multilane road -- 2.5.1 Multi-commodity traffic -- 2.5.2 Lane-changing traffic -- Notes -- Problems -- 3 Basic principles -- 3.1 Conservation laws -- 3.1.1 In the flow coordinates -- 3.1.2 In other coordinates -- 3.1.3 Conservation laws in other traffic systems -- 3.2 Collision-free condition and other first-order constraints -- 3.2.1 Constraints on density and spacing -- 3.2.2 Constraints on speed and pace -- 3.2.3 Constraints on flow-rate and headway -- 3.2.4 Clearance and time gap -- 3.3 Fundamental diagram -- 3.3.1 Derivation and observation -- 3.3.2 General fundamental diagrams -- 3.3.3 The Greenshields fundamental diagram -- 3.3.4 The triangular fundamental diagram -- 3.3.5 Fundamental diagrams in other secondary variables -- 3.3.6 Non-concave flow-density relations and non-decreasing speed-density relations -- 3.3.7 Fundamental diagrams of inhomogeneous roads and lane-changing traffic -- 3.3.8 Multi-commodity fundamental diagrams | |
505 | 8 | |a 3.3.9 Network fundamental diagram -- 3.4 Bounded acceleration and higher-order constraints -- Notes -- Problems -- 4 Basic concepts -- 4.1 Steady states -- 4.2 The simple lead-vehicle problem -- 4.3 Stationary states -- 4.3.1 Definition -- 4.3.2 Equilibrium stationary state in a lane-drop/sag/tunnel zone -- 4.3.3 Considering bounded acceleration -- 4.4 Bottlenecks on a road -- 4.4.1 Capacity reduction -- 4.4.2 More on lane-drop bottlenecks -- 4.4.3 Capacity drop -- 4.5 First-in-first-out (FIFO) -- 4.5.1 FIFO multilane traffic -- 4.5.2 Non-FIFO traffic -- 4.6 First-in-first-out and unifiable equilibrium states -- Notes -- Problems -- Part II First-order models -- 5 The Lighthill-Whitham-Richards (LWR) model -- 5.1 Model derivation -- 5.1.1 With the Greenshields fundamental diagram -- 5.1.2 Equivalent formulations in other coordinates -- 5.1.3 Initial and boundary conditions -- 5.2 Extensions -- 5.3 The initial value problem with the triangular fundamental diagram and linear transport equation -- 5.3.1 Under-critical initial conditions -- 5.3.2 Over-critical initial conditions -- 5.3.3 Mixed under- and over-critical initial conditions -- 5.4 General fundamental diagram and characteristic wave -- 5.4.1 Steady solutions -- 5.4.2 Nearly steady solutions and characteristic wave -- 5.5 Solutions to the Riemann problem, shock and rarefaction waves, and entropy condition -- 5.5.1 Shock wave -- 5.5.2 Rarefaction wave -- 5.5.3 Entropy condition -- 5.5.4 Riemann solutions with the triangular fundamental diagram -- 5.6 Stationary states and boundary fluxes in Riemann solutions -- 5.7 Inhomogeneous LWR model -- 5.7.1 Location-dependent speed limits -- 5.7.2 Location-dependent number of lanes -- 5.8 An example with a moving bottleneck -- Notes -- Problems -- 6 The Cell Transmission Model (CTM) -- 6.1 Numerical methods for solving the LWR model | |
505 | 8 | |a 6.1.1 Finite difference methods -- 6.1.2 The Godunov method -- 6.2 The Cell Transmission Model -- 6.2.1 Demand and supply -- 6.2.2 Boundary flux function -- 6.2.3 Boundary conditions -- 6.2.4 The CTM -- 6.2.5 Numerical accuracy and computational cost -- 6.3 Stationary states on a link -- 6.4 Numerical solutions to the Riemann problem -- 6.4.1 Shock wave -- 6.4.2 Rarefaction wave -- 6.5 Generalized CTM for link traffic -- 6.5.1 Inhomogeneous roads -- 6.5.2 Multi-commodity models -- 6.6 Junction models -- 6.6.1 Diverge models -- 6.6.2 Merge models -- 6.6.3 General junction models -- Notes -- Problems -- 7 Newell's simplified kinematic wave model -- 7.1 The Hamilton-Jacobi equations and the Hopf-Lax formula for the LWR model -- 7.1.1 The four Hamilton-Jacobi equations equivalent to the LWR model -- 7.1.2 The variational principle -- 7.1.3 The Hopf-Lax formula -- 7.1.4 The Riemann problem -- 7.2 Newell's simplified kinematic wave model -- 7.2.1 Derivation -- 7.2.2 Properties -- 7.2.3 Newell's model in the trajectory coordinates -- 7.3 Queueing dynamics on a road segment -- Notes -- Problems -- 8 The Link Transmission Model (LTM) -- 8.1 Basic variables -- 8.2 New link variables: link demand, supply, queue, and vacancy -- 8.3 Continuous Link Transmission Model -- 8.4 Discrete Link Transmission Model -- 8.5 Homogeneous signalized road networks -- 8.6 Stationary states on a link -- 8.6.1 Definition -- 8.6.2 Simple boundary value problem for a road segment -- Notes -- Problems -- 9 Newell's simplified car-following model -- 9.1 Derivation -- 9.2 Properties -- 9.2.1 First-order principles -- 9.2.2 Equivalent formulations -- 9.3 Applications -- 9.3.1 Simple accelerating problem (queue discharge problem) -- 9.3.2 Simple braking problem -- Notes -- Problems -- Part III Queueing models -- 10 The link queue model -- 10.1 Link density, demand, and supply | |
505 | 8 | |a 10.1.1 Basic relations -- 10.1.2 Definitions of link demand and supply -- 10.2 Link queue model -- 10.2.1 Continuous version -- 10.2.2 Discrete version -- 10.3 Well-defined and collision-free conditions -- 10.4 Simple boundary value problem -- 10.4.1 Stationary states -- 10.4.2 Dynamic solution of a simple boundary value problem -- 10.5 Applications and extensions -- 10.5.1 Network fundamental diagram on a signalized ring road -- 10.5.2 Modified demand function and the queue discharge problem -- Notes -- Problems -- 11 Point queue model -- 11.1 Derivation -- 11.1.1 Point queue as a limit of a road segment -- 11.1.2 Definitions of queue and vacancy sizes and internal demand and supply -- 11.2 Equivalent formulations -- 11.2.1 Continuous versions -- 11.2.2 Discrete versions -- 11.3 Properties -- 11.3.1 Queueing times -- 11.3.2 Integral version -- 11.3.3 With a constant external supply -- 11.4 Departure time choice at a single bottleneck -- 11.4.1 Costs -- 11.4.2 User equilibrium -- Notes -- Problems -- 12 The bathtub model -- 12.1 A unified space dimension -- 12.1.1 Traditional transportation system analysis -- 12.1.2 A new paradigm -- 12.2 Definitions of network-wide trip variables -- 12.2.1 Travel demand -- Total in-flow and in-flux -- Relative in-flows and in-fluxes -- Proportion and proportion density of entering trips -- Average trip distance and trip-miles-traveled -- 12.2.2 Active trips -- Total number of active trips -- Relative number of active trips and relative trip density -- Proportion and proportion density in the relative space -- Average remaining trip distance and total remaining TMT -- Initial condition -- 12.2.3 Averages speed and completion rates -- Distributions with respect to the speed -- Average speeds -- Completion rate in TMT -- Completion rate in total number of trips -- 12.2.4 A network queue | |
505 | 8 | |a 12.3 Three conservation equations -- 12.3.1 Conservation in total number of trips -- 12.3.2 Conservation in the trip-miles-traveled -- 12.3.3 Conservation in the relative number of trips -- 12.3.4 Relationship among the three conservation laws -- 12.4 Three simplification assumptions -- 12.4.1 The bathtub assumption -- Undifferentiated roads -- Characteristic travel distance and characteristic trip distance -- Characteristic curves and integral conservation equations -- 12.4.2 Network fundamental diagram -- Relationship between the vehicle density and trip density -- Network fundamental diagram of vehicular traffic -- 12.4.3 Time-independent negative exponential distribution of trip distances -- 12.5 Bathtub models -- 12.5.1 Derivation -- 12.5.2 Vickrey's bathtub model -- 12.6 Numerical methods -- 12.6.1 A numerical method for solving the integral form -- 12.6.2 A numerical method for solving the differential form -- 12.6.3 A numerical example -- Notes -- Problems -- Bibliography -- Index -- Back Cover | |
650 | 4 | |a Traffic flow | |
650 | 4 | |a Traffic flow-Mathematical models | |
776 | 0 | 8 | |i Erscheint auch als |a Jin, Wen-Long |t Introduction to Network Traffic Flow Theory |d San Diego : Elsevier,c2021 |n Druck-Ausgabe |z 978-0-12-815840-1 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033605405 | |
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6550933 |l DE-91 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1810738988672090112 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Jin, Wen-Long |
author_facet | Jin, Wen-Long |
author_role | aut |
author_sort | Jin, Wen-Long |
author_variant | w l j wlj |
building | Verbundindex |
bvnumber | BV048224672 |
classification_tum | RPL 860 BAU 850 |
collection | ZDB-30-PQE |
contents | Front Cover -- Introduction to Network Traffic Flow Theory -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Notations -- Part I Basics -- 1 Introduction -- 1.1 Transportation system analysis -- 1.2 Traffic flow theory -- 1.3 Principles, concepts, models, and methods in traffic flow theory -- 1.4 A brief overview of the book -- Notes -- Problems -- 2 Definitions of variables -- 2.1 Three traffic scenarios and space-time diagrams -- 2.2 The three-dimensional representation of traffic flow and primary variables -- 2.3 More derived variables in three coordinates -- 2.3.1 In the flow coordinates -- 2.3.2 In the trajectory coordinates -- 2.3.3 In the schedule coordinates -- 2.3.4 Higher-order derivatives of the primary variables -- 2.3.5 Relationships among the secondary variables -- 2.4 Detection -- 2.4.1 Edie's formulas -- 2.4.2 Detectors -- 2.5 Multi-commodity traffic on a multilane road -- 2.5.1 Multi-commodity traffic -- 2.5.2 Lane-changing traffic -- Notes -- Problems -- 3 Basic principles -- 3.1 Conservation laws -- 3.1.1 In the flow coordinates -- 3.1.2 In other coordinates -- 3.1.3 Conservation laws in other traffic systems -- 3.2 Collision-free condition and other first-order constraints -- 3.2.1 Constraints on density and spacing -- 3.2.2 Constraints on speed and pace -- 3.2.3 Constraints on flow-rate and headway -- 3.2.4 Clearance and time gap -- 3.3 Fundamental diagram -- 3.3.1 Derivation and observation -- 3.3.2 General fundamental diagrams -- 3.3.3 The Greenshields fundamental diagram -- 3.3.4 The triangular fundamental diagram -- 3.3.5 Fundamental diagrams in other secondary variables -- 3.3.6 Non-concave flow-density relations and non-decreasing speed-density relations -- 3.3.7 Fundamental diagrams of inhomogeneous roads and lane-changing traffic -- 3.3.8 Multi-commodity fundamental diagrams 3.3.9 Network fundamental diagram -- 3.4 Bounded acceleration and higher-order constraints -- Notes -- Problems -- 4 Basic concepts -- 4.1 Steady states -- 4.2 The simple lead-vehicle problem -- 4.3 Stationary states -- 4.3.1 Definition -- 4.3.2 Equilibrium stationary state in a lane-drop/sag/tunnel zone -- 4.3.3 Considering bounded acceleration -- 4.4 Bottlenecks on a road -- 4.4.1 Capacity reduction -- 4.4.2 More on lane-drop bottlenecks -- 4.4.3 Capacity drop -- 4.5 First-in-first-out (FIFO) -- 4.5.1 FIFO multilane traffic -- 4.5.2 Non-FIFO traffic -- 4.6 First-in-first-out and unifiable equilibrium states -- Notes -- Problems -- Part II First-order models -- 5 The Lighthill-Whitham-Richards (LWR) model -- 5.1 Model derivation -- 5.1.1 With the Greenshields fundamental diagram -- 5.1.2 Equivalent formulations in other coordinates -- 5.1.3 Initial and boundary conditions -- 5.2 Extensions -- 5.3 The initial value problem with the triangular fundamental diagram and linear transport equation -- 5.3.1 Under-critical initial conditions -- 5.3.2 Over-critical initial conditions -- 5.3.3 Mixed under- and over-critical initial conditions -- 5.4 General fundamental diagram and characteristic wave -- 5.4.1 Steady solutions -- 5.4.2 Nearly steady solutions and characteristic wave -- 5.5 Solutions to the Riemann problem, shock and rarefaction waves, and entropy condition -- 5.5.1 Shock wave -- 5.5.2 Rarefaction wave -- 5.5.3 Entropy condition -- 5.5.4 Riemann solutions with the triangular fundamental diagram -- 5.6 Stationary states and boundary fluxes in Riemann solutions -- 5.7 Inhomogeneous LWR model -- 5.7.1 Location-dependent speed limits -- 5.7.2 Location-dependent number of lanes -- 5.8 An example with a moving bottleneck -- Notes -- Problems -- 6 The Cell Transmission Model (CTM) -- 6.1 Numerical methods for solving the LWR model 6.1.1 Finite difference methods -- 6.1.2 The Godunov method -- 6.2 The Cell Transmission Model -- 6.2.1 Demand and supply -- 6.2.2 Boundary flux function -- 6.2.3 Boundary conditions -- 6.2.4 The CTM -- 6.2.5 Numerical accuracy and computational cost -- 6.3 Stationary states on a link -- 6.4 Numerical solutions to the Riemann problem -- 6.4.1 Shock wave -- 6.4.2 Rarefaction wave -- 6.5 Generalized CTM for link traffic -- 6.5.1 Inhomogeneous roads -- 6.5.2 Multi-commodity models -- 6.6 Junction models -- 6.6.1 Diverge models -- 6.6.2 Merge models -- 6.6.3 General junction models -- Notes -- Problems -- 7 Newell's simplified kinematic wave model -- 7.1 The Hamilton-Jacobi equations and the Hopf-Lax formula for the LWR model -- 7.1.1 The four Hamilton-Jacobi equations equivalent to the LWR model -- 7.1.2 The variational principle -- 7.1.3 The Hopf-Lax formula -- 7.1.4 The Riemann problem -- 7.2 Newell's simplified kinematic wave model -- 7.2.1 Derivation -- 7.2.2 Properties -- 7.2.3 Newell's model in the trajectory coordinates -- 7.3 Queueing dynamics on a road segment -- Notes -- Problems -- 8 The Link Transmission Model (LTM) -- 8.1 Basic variables -- 8.2 New link variables: link demand, supply, queue, and vacancy -- 8.3 Continuous Link Transmission Model -- 8.4 Discrete Link Transmission Model -- 8.5 Homogeneous signalized road networks -- 8.6 Stationary states on a link -- 8.6.1 Definition -- 8.6.2 Simple boundary value problem for a road segment -- Notes -- Problems -- 9 Newell's simplified car-following model -- 9.1 Derivation -- 9.2 Properties -- 9.2.1 First-order principles -- 9.2.2 Equivalent formulations -- 9.3 Applications -- 9.3.1 Simple accelerating problem (queue discharge problem) -- 9.3.2 Simple braking problem -- Notes -- Problems -- Part III Queueing models -- 10 The link queue model -- 10.1 Link density, demand, and supply 10.1.1 Basic relations -- 10.1.2 Definitions of link demand and supply -- 10.2 Link queue model -- 10.2.1 Continuous version -- 10.2.2 Discrete version -- 10.3 Well-defined and collision-free conditions -- 10.4 Simple boundary value problem -- 10.4.1 Stationary states -- 10.4.2 Dynamic solution of a simple boundary value problem -- 10.5 Applications and extensions -- 10.5.1 Network fundamental diagram on a signalized ring road -- 10.5.2 Modified demand function and the queue discharge problem -- Notes -- Problems -- 11 Point queue model -- 11.1 Derivation -- 11.1.1 Point queue as a limit of a road segment -- 11.1.2 Definitions of queue and vacancy sizes and internal demand and supply -- 11.2 Equivalent formulations -- 11.2.1 Continuous versions -- 11.2.2 Discrete versions -- 11.3 Properties -- 11.3.1 Queueing times -- 11.3.2 Integral version -- 11.3.3 With a constant external supply -- 11.4 Departure time choice at a single bottleneck -- 11.4.1 Costs -- 11.4.2 User equilibrium -- Notes -- Problems -- 12 The bathtub model -- 12.1 A unified space dimension -- 12.1.1 Traditional transportation system analysis -- 12.1.2 A new paradigm -- 12.2 Definitions of network-wide trip variables -- 12.2.1 Travel demand -- Total in-flow and in-flux -- Relative in-flows and in-fluxes -- Proportion and proportion density of entering trips -- Average trip distance and trip-miles-traveled -- 12.2.2 Active trips -- Total number of active trips -- Relative number of active trips and relative trip density -- Proportion and proportion density in the relative space -- Average remaining trip distance and total remaining TMT -- Initial condition -- 12.2.3 Averages speed and completion rates -- Distributions with respect to the speed -- Average speeds -- Completion rate in TMT -- Completion rate in total number of trips -- 12.2.4 A network queue 12.3 Three conservation equations -- 12.3.1 Conservation in total number of trips -- 12.3.2 Conservation in the trip-miles-traveled -- 12.3.3 Conservation in the relative number of trips -- 12.3.4 Relationship among the three conservation laws -- 12.4 Three simplification assumptions -- 12.4.1 The bathtub assumption -- Undifferentiated roads -- Characteristic travel distance and characteristic trip distance -- Characteristic curves and integral conservation equations -- 12.4.2 Network fundamental diagram -- Relationship between the vehicle density and trip density -- Network fundamental diagram of vehicular traffic -- 12.4.3 Time-independent negative exponential distribution of trip distances -- 12.5 Bathtub models -- 12.5.1 Derivation -- 12.5.2 Vickrey's bathtub model -- 12.6 Numerical methods -- 12.6.1 A numerical method for solving the integral form -- 12.6.2 A numerical method for solving the differential form -- 12.6.3 A numerical example -- Notes -- Problems -- Bibliography -- Index -- Back Cover |
ctrlnum | (ZDB-30-PQE)EBC6550933 (ZDB-30-PAD)EBC6550933 (ZDB-89-EBL)EBL6550933 (OCoLC)1246581339 (DE-599)BVBBV048224672 |
dewey-full | 388.4131 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 388 - Transportation |
dewey-raw | 388.4131 |
dewey-search | 388.4131 |
dewey-sort | 3388.4131 |
dewey-tens | 380 - Commerce, communications, transportation |
discipline | Raumplanung Bauingenieurwesen Wirtschaftswissenschaften Verkehrstechnik |
discipline_str_mv | Bauingenieurwesen Raumplanung Wirtschaftswissenschaften Verkehrstechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048224672</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128158418</subfield><subfield code="9">978-0-12-815841-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6550933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6550933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6550933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1246581339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048224672</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">388.4131</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RPL 860</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 850</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jin, Wen-Long</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to network traffic flow theory</subfield><subfield code="b">principles, concepts, models, and methods</subfield><subfield code="c">Wen-Long Jin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Introduction to Network Traffic Flow Theory -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Notations -- Part I Basics -- 1 Introduction -- 1.1 Transportation system analysis -- 1.2 Traffic flow theory -- 1.3 Principles, concepts, models, and methods in traffic flow theory -- 1.4 A brief overview of the book -- Notes -- Problems -- 2 Definitions of variables -- 2.1 Three traffic scenarios and space-time diagrams -- 2.2 The three-dimensional representation of traffic flow and primary variables -- 2.3 More derived variables in three coordinates -- 2.3.1 In the flow coordinates -- 2.3.2 In the trajectory coordinates -- 2.3.3 In the schedule coordinates -- 2.3.4 Higher-order derivatives of the primary variables -- 2.3.5 Relationships among the secondary variables -- 2.4 Detection -- 2.4.1 Edie's formulas -- 2.4.2 Detectors -- 2.5 Multi-commodity traffic on a multilane road -- 2.5.1 Multi-commodity traffic -- 2.5.2 Lane-changing traffic -- Notes -- Problems -- 3 Basic principles -- 3.1 Conservation laws -- 3.1.1 In the flow coordinates -- 3.1.2 In other coordinates -- 3.1.3 Conservation laws in other traffic systems -- 3.2 Collision-free condition and other first-order constraints -- 3.2.1 Constraints on density and spacing -- 3.2.2 Constraints on speed and pace -- 3.2.3 Constraints on flow-rate and headway -- 3.2.4 Clearance and time gap -- 3.3 Fundamental diagram -- 3.3.1 Derivation and observation -- 3.3.2 General fundamental diagrams -- 3.3.3 The Greenshields fundamental diagram -- 3.3.4 The triangular fundamental diagram -- 3.3.5 Fundamental diagrams in other secondary variables -- 3.3.6 Non-concave flow-density relations and non-decreasing speed-density relations -- 3.3.7 Fundamental diagrams of inhomogeneous roads and lane-changing traffic -- 3.3.8 Multi-commodity fundamental diagrams</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.9 Network fundamental diagram -- 3.4 Bounded acceleration and higher-order constraints -- Notes -- Problems -- 4 Basic concepts -- 4.1 Steady states -- 4.2 The simple lead-vehicle problem -- 4.3 Stationary states -- 4.3.1 Definition -- 4.3.2 Equilibrium stationary state in a lane-drop/sag/tunnel zone -- 4.3.3 Considering bounded acceleration -- 4.4 Bottlenecks on a road -- 4.4.1 Capacity reduction -- 4.4.2 More on lane-drop bottlenecks -- 4.4.3 Capacity drop -- 4.5 First-in-first-out (FIFO) -- 4.5.1 FIFO multilane traffic -- 4.5.2 Non-FIFO traffic -- 4.6 First-in-first-out and unifiable equilibrium states -- Notes -- Problems -- Part II First-order models -- 5 The Lighthill-Whitham-Richards (LWR) model -- 5.1 Model derivation -- 5.1.1 With the Greenshields fundamental diagram -- 5.1.2 Equivalent formulations in other coordinates -- 5.1.3 Initial and boundary conditions -- 5.2 Extensions -- 5.3 The initial value problem with the triangular fundamental diagram and linear transport equation -- 5.3.1 Under-critical initial conditions -- 5.3.2 Over-critical initial conditions -- 5.3.3 Mixed under- and over-critical initial conditions -- 5.4 General fundamental diagram and characteristic wave -- 5.4.1 Steady solutions -- 5.4.2 Nearly steady solutions and characteristic wave -- 5.5 Solutions to the Riemann problem, shock and rarefaction waves, and entropy condition -- 5.5.1 Shock wave -- 5.5.2 Rarefaction wave -- 5.5.3 Entropy condition -- 5.5.4 Riemann solutions with the triangular fundamental diagram -- 5.6 Stationary states and boundary fluxes in Riemann solutions -- 5.7 Inhomogeneous LWR model -- 5.7.1 Location-dependent speed limits -- 5.7.2 Location-dependent number of lanes -- 5.8 An example with a moving bottleneck -- Notes -- Problems -- 6 The Cell Transmission Model (CTM) -- 6.1 Numerical methods for solving the LWR model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.1.1 Finite difference methods -- 6.1.2 The Godunov method -- 6.2 The Cell Transmission Model -- 6.2.1 Demand and supply -- 6.2.2 Boundary flux function -- 6.2.3 Boundary conditions -- 6.2.4 The CTM -- 6.2.5 Numerical accuracy and computational cost -- 6.3 Stationary states on a link -- 6.4 Numerical solutions to the Riemann problem -- 6.4.1 Shock wave -- 6.4.2 Rarefaction wave -- 6.5 Generalized CTM for link traffic -- 6.5.1 Inhomogeneous roads -- 6.5.2 Multi-commodity models -- 6.6 Junction models -- 6.6.1 Diverge models -- 6.6.2 Merge models -- 6.6.3 General junction models -- Notes -- Problems -- 7 Newell's simplified kinematic wave model -- 7.1 The Hamilton-Jacobi equations and the Hopf-Lax formula for the LWR model -- 7.1.1 The four Hamilton-Jacobi equations equivalent to the LWR model -- 7.1.2 The variational principle -- 7.1.3 The Hopf-Lax formula -- 7.1.4 The Riemann problem -- 7.2 Newell's simplified kinematic wave model -- 7.2.1 Derivation -- 7.2.2 Properties -- 7.2.3 Newell's model in the trajectory coordinates -- 7.3 Queueing dynamics on a road segment -- Notes -- Problems -- 8 The Link Transmission Model (LTM) -- 8.1 Basic variables -- 8.2 New link variables: link demand, supply, queue, and vacancy -- 8.3 Continuous Link Transmission Model -- 8.4 Discrete Link Transmission Model -- 8.5 Homogeneous signalized road networks -- 8.6 Stationary states on a link -- 8.6.1 Definition -- 8.6.2 Simple boundary value problem for a road segment -- Notes -- Problems -- 9 Newell's simplified car-following model -- 9.1 Derivation -- 9.2 Properties -- 9.2.1 First-order principles -- 9.2.2 Equivalent formulations -- 9.3 Applications -- 9.3.1 Simple accelerating problem (queue discharge problem) -- 9.3.2 Simple braking problem -- Notes -- Problems -- Part III Queueing models -- 10 The link queue model -- 10.1 Link density, demand, and supply</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.1.1 Basic relations -- 10.1.2 Definitions of link demand and supply -- 10.2 Link queue model -- 10.2.1 Continuous version -- 10.2.2 Discrete version -- 10.3 Well-defined and collision-free conditions -- 10.4 Simple boundary value problem -- 10.4.1 Stationary states -- 10.4.2 Dynamic solution of a simple boundary value problem -- 10.5 Applications and extensions -- 10.5.1 Network fundamental diagram on a signalized ring road -- 10.5.2 Modified demand function and the queue discharge problem -- Notes -- Problems -- 11 Point queue model -- 11.1 Derivation -- 11.1.1 Point queue as a limit of a road segment -- 11.1.2 Definitions of queue and vacancy sizes and internal demand and supply -- 11.2 Equivalent formulations -- 11.2.1 Continuous versions -- 11.2.2 Discrete versions -- 11.3 Properties -- 11.3.1 Queueing times -- 11.3.2 Integral version -- 11.3.3 With a constant external supply -- 11.4 Departure time choice at a single bottleneck -- 11.4.1 Costs -- 11.4.2 User equilibrium -- Notes -- Problems -- 12 The bathtub model -- 12.1 A unified space dimension -- 12.1.1 Traditional transportation system analysis -- 12.1.2 A new paradigm -- 12.2 Definitions of network-wide trip variables -- 12.2.1 Travel demand -- Total in-flow and in-flux -- Relative in-flows and in-fluxes -- Proportion and proportion density of entering trips -- Average trip distance and trip-miles-traveled -- 12.2.2 Active trips -- Total number of active trips -- Relative number of active trips and relative trip density -- Proportion and proportion density in the relative space -- Average remaining trip distance and total remaining TMT -- Initial condition -- 12.2.3 Averages speed and completion rates -- Distributions with respect to the speed -- Average speeds -- Completion rate in TMT -- Completion rate in total number of trips -- 12.2.4 A network queue</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.3 Three conservation equations -- 12.3.1 Conservation in total number of trips -- 12.3.2 Conservation in the trip-miles-traveled -- 12.3.3 Conservation in the relative number of trips -- 12.3.4 Relationship among the three conservation laws -- 12.4 Three simplification assumptions -- 12.4.1 The bathtub assumption -- Undifferentiated roads -- Characteristic travel distance and characteristic trip distance -- Characteristic curves and integral conservation equations -- 12.4.2 Network fundamental diagram -- Relationship between the vehicle density and trip density -- Network fundamental diagram of vehicular traffic -- 12.4.3 Time-independent negative exponential distribution of trip distances -- 12.5 Bathtub models -- 12.5.1 Derivation -- 12.5.2 Vickrey's bathtub model -- 12.6 Numerical methods -- 12.6.1 A numerical method for solving the integral form -- 12.6.2 A numerical method for solving the differential form -- 12.6.3 A numerical example -- Notes -- Problems -- Bibliography -- Index -- Back Cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic flow-Mathematical models</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Jin, Wen-Long</subfield><subfield code="t">Introduction to Network Traffic Flow Theory</subfield><subfield code="d">San Diego : Elsevier,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-12-815840-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033605405</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6550933</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048224672 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:39Z |
indexdate | 2024-09-20T18:01:07Z |
institution | BVB |
isbn | 9780128158418 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033605405 |
oclc_num | 1246581339 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Elsevier |
record_format | marc |
spelling | Jin, Wen-Long Verfasser aut Introduction to network traffic flow theory principles, concepts, models, and methods Wen-Long Jin Amsterdam, Netherlands ; Kidlington, Oxford, United Kingdom ; Cambridge, MA, United States Elsevier 2021 © 2021 1 Online-Ressource Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Front Cover -- Introduction to Network Traffic Flow Theory -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Notations -- Part I Basics -- 1 Introduction -- 1.1 Transportation system analysis -- 1.2 Traffic flow theory -- 1.3 Principles, concepts, models, and methods in traffic flow theory -- 1.4 A brief overview of the book -- Notes -- Problems -- 2 Definitions of variables -- 2.1 Three traffic scenarios and space-time diagrams -- 2.2 The three-dimensional representation of traffic flow and primary variables -- 2.3 More derived variables in three coordinates -- 2.3.1 In the flow coordinates -- 2.3.2 In the trajectory coordinates -- 2.3.3 In the schedule coordinates -- 2.3.4 Higher-order derivatives of the primary variables -- 2.3.5 Relationships among the secondary variables -- 2.4 Detection -- 2.4.1 Edie's formulas -- 2.4.2 Detectors -- 2.5 Multi-commodity traffic on a multilane road -- 2.5.1 Multi-commodity traffic -- 2.5.2 Lane-changing traffic -- Notes -- Problems -- 3 Basic principles -- 3.1 Conservation laws -- 3.1.1 In the flow coordinates -- 3.1.2 In other coordinates -- 3.1.3 Conservation laws in other traffic systems -- 3.2 Collision-free condition and other first-order constraints -- 3.2.1 Constraints on density and spacing -- 3.2.2 Constraints on speed and pace -- 3.2.3 Constraints on flow-rate and headway -- 3.2.4 Clearance and time gap -- 3.3 Fundamental diagram -- 3.3.1 Derivation and observation -- 3.3.2 General fundamental diagrams -- 3.3.3 The Greenshields fundamental diagram -- 3.3.4 The triangular fundamental diagram -- 3.3.5 Fundamental diagrams in other secondary variables -- 3.3.6 Non-concave flow-density relations and non-decreasing speed-density relations -- 3.3.7 Fundamental diagrams of inhomogeneous roads and lane-changing traffic -- 3.3.8 Multi-commodity fundamental diagrams 3.3.9 Network fundamental diagram -- 3.4 Bounded acceleration and higher-order constraints -- Notes -- Problems -- 4 Basic concepts -- 4.1 Steady states -- 4.2 The simple lead-vehicle problem -- 4.3 Stationary states -- 4.3.1 Definition -- 4.3.2 Equilibrium stationary state in a lane-drop/sag/tunnel zone -- 4.3.3 Considering bounded acceleration -- 4.4 Bottlenecks on a road -- 4.4.1 Capacity reduction -- 4.4.2 More on lane-drop bottlenecks -- 4.4.3 Capacity drop -- 4.5 First-in-first-out (FIFO) -- 4.5.1 FIFO multilane traffic -- 4.5.2 Non-FIFO traffic -- 4.6 First-in-first-out and unifiable equilibrium states -- Notes -- Problems -- Part II First-order models -- 5 The Lighthill-Whitham-Richards (LWR) model -- 5.1 Model derivation -- 5.1.1 With the Greenshields fundamental diagram -- 5.1.2 Equivalent formulations in other coordinates -- 5.1.3 Initial and boundary conditions -- 5.2 Extensions -- 5.3 The initial value problem with the triangular fundamental diagram and linear transport equation -- 5.3.1 Under-critical initial conditions -- 5.3.2 Over-critical initial conditions -- 5.3.3 Mixed under- and over-critical initial conditions -- 5.4 General fundamental diagram and characteristic wave -- 5.4.1 Steady solutions -- 5.4.2 Nearly steady solutions and characteristic wave -- 5.5 Solutions to the Riemann problem, shock and rarefaction waves, and entropy condition -- 5.5.1 Shock wave -- 5.5.2 Rarefaction wave -- 5.5.3 Entropy condition -- 5.5.4 Riemann solutions with the triangular fundamental diagram -- 5.6 Stationary states and boundary fluxes in Riemann solutions -- 5.7 Inhomogeneous LWR model -- 5.7.1 Location-dependent speed limits -- 5.7.2 Location-dependent number of lanes -- 5.8 An example with a moving bottleneck -- Notes -- Problems -- 6 The Cell Transmission Model (CTM) -- 6.1 Numerical methods for solving the LWR model 6.1.1 Finite difference methods -- 6.1.2 The Godunov method -- 6.2 The Cell Transmission Model -- 6.2.1 Demand and supply -- 6.2.2 Boundary flux function -- 6.2.3 Boundary conditions -- 6.2.4 The CTM -- 6.2.5 Numerical accuracy and computational cost -- 6.3 Stationary states on a link -- 6.4 Numerical solutions to the Riemann problem -- 6.4.1 Shock wave -- 6.4.2 Rarefaction wave -- 6.5 Generalized CTM for link traffic -- 6.5.1 Inhomogeneous roads -- 6.5.2 Multi-commodity models -- 6.6 Junction models -- 6.6.1 Diverge models -- 6.6.2 Merge models -- 6.6.3 General junction models -- Notes -- Problems -- 7 Newell's simplified kinematic wave model -- 7.1 The Hamilton-Jacobi equations and the Hopf-Lax formula for the LWR model -- 7.1.1 The four Hamilton-Jacobi equations equivalent to the LWR model -- 7.1.2 The variational principle -- 7.1.3 The Hopf-Lax formula -- 7.1.4 The Riemann problem -- 7.2 Newell's simplified kinematic wave model -- 7.2.1 Derivation -- 7.2.2 Properties -- 7.2.3 Newell's model in the trajectory coordinates -- 7.3 Queueing dynamics on a road segment -- Notes -- Problems -- 8 The Link Transmission Model (LTM) -- 8.1 Basic variables -- 8.2 New link variables: link demand, supply, queue, and vacancy -- 8.3 Continuous Link Transmission Model -- 8.4 Discrete Link Transmission Model -- 8.5 Homogeneous signalized road networks -- 8.6 Stationary states on a link -- 8.6.1 Definition -- 8.6.2 Simple boundary value problem for a road segment -- Notes -- Problems -- 9 Newell's simplified car-following model -- 9.1 Derivation -- 9.2 Properties -- 9.2.1 First-order principles -- 9.2.2 Equivalent formulations -- 9.3 Applications -- 9.3.1 Simple accelerating problem (queue discharge problem) -- 9.3.2 Simple braking problem -- Notes -- Problems -- Part III Queueing models -- 10 The link queue model -- 10.1 Link density, demand, and supply 10.1.1 Basic relations -- 10.1.2 Definitions of link demand and supply -- 10.2 Link queue model -- 10.2.1 Continuous version -- 10.2.2 Discrete version -- 10.3 Well-defined and collision-free conditions -- 10.4 Simple boundary value problem -- 10.4.1 Stationary states -- 10.4.2 Dynamic solution of a simple boundary value problem -- 10.5 Applications and extensions -- 10.5.1 Network fundamental diagram on a signalized ring road -- 10.5.2 Modified demand function and the queue discharge problem -- Notes -- Problems -- 11 Point queue model -- 11.1 Derivation -- 11.1.1 Point queue as a limit of a road segment -- 11.1.2 Definitions of queue and vacancy sizes and internal demand and supply -- 11.2 Equivalent formulations -- 11.2.1 Continuous versions -- 11.2.2 Discrete versions -- 11.3 Properties -- 11.3.1 Queueing times -- 11.3.2 Integral version -- 11.3.3 With a constant external supply -- 11.4 Departure time choice at a single bottleneck -- 11.4.1 Costs -- 11.4.2 User equilibrium -- Notes -- Problems -- 12 The bathtub model -- 12.1 A unified space dimension -- 12.1.1 Traditional transportation system analysis -- 12.1.2 A new paradigm -- 12.2 Definitions of network-wide trip variables -- 12.2.1 Travel demand -- Total in-flow and in-flux -- Relative in-flows and in-fluxes -- Proportion and proportion density of entering trips -- Average trip distance and trip-miles-traveled -- 12.2.2 Active trips -- Total number of active trips -- Relative number of active trips and relative trip density -- Proportion and proportion density in the relative space -- Average remaining trip distance and total remaining TMT -- Initial condition -- 12.2.3 Averages speed and completion rates -- Distributions with respect to the speed -- Average speeds -- Completion rate in TMT -- Completion rate in total number of trips -- 12.2.4 A network queue 12.3 Three conservation equations -- 12.3.1 Conservation in total number of trips -- 12.3.2 Conservation in the trip-miles-traveled -- 12.3.3 Conservation in the relative number of trips -- 12.3.4 Relationship among the three conservation laws -- 12.4 Three simplification assumptions -- 12.4.1 The bathtub assumption -- Undifferentiated roads -- Characteristic travel distance and characteristic trip distance -- Characteristic curves and integral conservation equations -- 12.4.2 Network fundamental diagram -- Relationship between the vehicle density and trip density -- Network fundamental diagram of vehicular traffic -- 12.4.3 Time-independent negative exponential distribution of trip distances -- 12.5 Bathtub models -- 12.5.1 Derivation -- 12.5.2 Vickrey's bathtub model -- 12.6 Numerical methods -- 12.6.1 A numerical method for solving the integral form -- 12.6.2 A numerical method for solving the differential form -- 12.6.3 A numerical example -- Notes -- Problems -- Bibliography -- Index -- Back Cover Traffic flow Traffic flow-Mathematical models Erscheint auch als Jin, Wen-Long Introduction to Network Traffic Flow Theory San Diego : Elsevier,c2021 Druck-Ausgabe 978-0-12-815840-1 |
spellingShingle | Jin, Wen-Long Introduction to network traffic flow theory principles, concepts, models, and methods Front Cover -- Introduction to Network Traffic Flow Theory -- Copyright -- Contents -- Preface -- Acknowledgments -- Acronyms -- Notations -- Part I Basics -- 1 Introduction -- 1.1 Transportation system analysis -- 1.2 Traffic flow theory -- 1.3 Principles, concepts, models, and methods in traffic flow theory -- 1.4 A brief overview of the book -- Notes -- Problems -- 2 Definitions of variables -- 2.1 Three traffic scenarios and space-time diagrams -- 2.2 The three-dimensional representation of traffic flow and primary variables -- 2.3 More derived variables in three coordinates -- 2.3.1 In the flow coordinates -- 2.3.2 In the trajectory coordinates -- 2.3.3 In the schedule coordinates -- 2.3.4 Higher-order derivatives of the primary variables -- 2.3.5 Relationships among the secondary variables -- 2.4 Detection -- 2.4.1 Edie's formulas -- 2.4.2 Detectors -- 2.5 Multi-commodity traffic on a multilane road -- 2.5.1 Multi-commodity traffic -- 2.5.2 Lane-changing traffic -- Notes -- Problems -- 3 Basic principles -- 3.1 Conservation laws -- 3.1.1 In the flow coordinates -- 3.1.2 In other coordinates -- 3.1.3 Conservation laws in other traffic systems -- 3.2 Collision-free condition and other first-order constraints -- 3.2.1 Constraints on density and spacing -- 3.2.2 Constraints on speed and pace -- 3.2.3 Constraints on flow-rate and headway -- 3.2.4 Clearance and time gap -- 3.3 Fundamental diagram -- 3.3.1 Derivation and observation -- 3.3.2 General fundamental diagrams -- 3.3.3 The Greenshields fundamental diagram -- 3.3.4 The triangular fundamental diagram -- 3.3.5 Fundamental diagrams in other secondary variables -- 3.3.6 Non-concave flow-density relations and non-decreasing speed-density relations -- 3.3.7 Fundamental diagrams of inhomogeneous roads and lane-changing traffic -- 3.3.8 Multi-commodity fundamental diagrams 3.3.9 Network fundamental diagram -- 3.4 Bounded acceleration and higher-order constraints -- Notes -- Problems -- 4 Basic concepts -- 4.1 Steady states -- 4.2 The simple lead-vehicle problem -- 4.3 Stationary states -- 4.3.1 Definition -- 4.3.2 Equilibrium stationary state in a lane-drop/sag/tunnel zone -- 4.3.3 Considering bounded acceleration -- 4.4 Bottlenecks on a road -- 4.4.1 Capacity reduction -- 4.4.2 More on lane-drop bottlenecks -- 4.4.3 Capacity drop -- 4.5 First-in-first-out (FIFO) -- 4.5.1 FIFO multilane traffic -- 4.5.2 Non-FIFO traffic -- 4.6 First-in-first-out and unifiable equilibrium states -- Notes -- Problems -- Part II First-order models -- 5 The Lighthill-Whitham-Richards (LWR) model -- 5.1 Model derivation -- 5.1.1 With the Greenshields fundamental diagram -- 5.1.2 Equivalent formulations in other coordinates -- 5.1.3 Initial and boundary conditions -- 5.2 Extensions -- 5.3 The initial value problem with the triangular fundamental diagram and linear transport equation -- 5.3.1 Under-critical initial conditions -- 5.3.2 Over-critical initial conditions -- 5.3.3 Mixed under- and over-critical initial conditions -- 5.4 General fundamental diagram and characteristic wave -- 5.4.1 Steady solutions -- 5.4.2 Nearly steady solutions and characteristic wave -- 5.5 Solutions to the Riemann problem, shock and rarefaction waves, and entropy condition -- 5.5.1 Shock wave -- 5.5.2 Rarefaction wave -- 5.5.3 Entropy condition -- 5.5.4 Riemann solutions with the triangular fundamental diagram -- 5.6 Stationary states and boundary fluxes in Riemann solutions -- 5.7 Inhomogeneous LWR model -- 5.7.1 Location-dependent speed limits -- 5.7.2 Location-dependent number of lanes -- 5.8 An example with a moving bottleneck -- Notes -- Problems -- 6 The Cell Transmission Model (CTM) -- 6.1 Numerical methods for solving the LWR model 6.1.1 Finite difference methods -- 6.1.2 The Godunov method -- 6.2 The Cell Transmission Model -- 6.2.1 Demand and supply -- 6.2.2 Boundary flux function -- 6.2.3 Boundary conditions -- 6.2.4 The CTM -- 6.2.5 Numerical accuracy and computational cost -- 6.3 Stationary states on a link -- 6.4 Numerical solutions to the Riemann problem -- 6.4.1 Shock wave -- 6.4.2 Rarefaction wave -- 6.5 Generalized CTM for link traffic -- 6.5.1 Inhomogeneous roads -- 6.5.2 Multi-commodity models -- 6.6 Junction models -- 6.6.1 Diverge models -- 6.6.2 Merge models -- 6.6.3 General junction models -- Notes -- Problems -- 7 Newell's simplified kinematic wave model -- 7.1 The Hamilton-Jacobi equations and the Hopf-Lax formula for the LWR model -- 7.1.1 The four Hamilton-Jacobi equations equivalent to the LWR model -- 7.1.2 The variational principle -- 7.1.3 The Hopf-Lax formula -- 7.1.4 The Riemann problem -- 7.2 Newell's simplified kinematic wave model -- 7.2.1 Derivation -- 7.2.2 Properties -- 7.2.3 Newell's model in the trajectory coordinates -- 7.3 Queueing dynamics on a road segment -- Notes -- Problems -- 8 The Link Transmission Model (LTM) -- 8.1 Basic variables -- 8.2 New link variables: link demand, supply, queue, and vacancy -- 8.3 Continuous Link Transmission Model -- 8.4 Discrete Link Transmission Model -- 8.5 Homogeneous signalized road networks -- 8.6 Stationary states on a link -- 8.6.1 Definition -- 8.6.2 Simple boundary value problem for a road segment -- Notes -- Problems -- 9 Newell's simplified car-following model -- 9.1 Derivation -- 9.2 Properties -- 9.2.1 First-order principles -- 9.2.2 Equivalent formulations -- 9.3 Applications -- 9.3.1 Simple accelerating problem (queue discharge problem) -- 9.3.2 Simple braking problem -- Notes -- Problems -- Part III Queueing models -- 10 The link queue model -- 10.1 Link density, demand, and supply 10.1.1 Basic relations -- 10.1.2 Definitions of link demand and supply -- 10.2 Link queue model -- 10.2.1 Continuous version -- 10.2.2 Discrete version -- 10.3 Well-defined and collision-free conditions -- 10.4 Simple boundary value problem -- 10.4.1 Stationary states -- 10.4.2 Dynamic solution of a simple boundary value problem -- 10.5 Applications and extensions -- 10.5.1 Network fundamental diagram on a signalized ring road -- 10.5.2 Modified demand function and the queue discharge problem -- Notes -- Problems -- 11 Point queue model -- 11.1 Derivation -- 11.1.1 Point queue as a limit of a road segment -- 11.1.2 Definitions of queue and vacancy sizes and internal demand and supply -- 11.2 Equivalent formulations -- 11.2.1 Continuous versions -- 11.2.2 Discrete versions -- 11.3 Properties -- 11.3.1 Queueing times -- 11.3.2 Integral version -- 11.3.3 With a constant external supply -- 11.4 Departure time choice at a single bottleneck -- 11.4.1 Costs -- 11.4.2 User equilibrium -- Notes -- Problems -- 12 The bathtub model -- 12.1 A unified space dimension -- 12.1.1 Traditional transportation system analysis -- 12.1.2 A new paradigm -- 12.2 Definitions of network-wide trip variables -- 12.2.1 Travel demand -- Total in-flow and in-flux -- Relative in-flows and in-fluxes -- Proportion and proportion density of entering trips -- Average trip distance and trip-miles-traveled -- 12.2.2 Active trips -- Total number of active trips -- Relative number of active trips and relative trip density -- Proportion and proportion density in the relative space -- Average remaining trip distance and total remaining TMT -- Initial condition -- 12.2.3 Averages speed and completion rates -- Distributions with respect to the speed -- Average speeds -- Completion rate in TMT -- Completion rate in total number of trips -- 12.2.4 A network queue 12.3 Three conservation equations -- 12.3.1 Conservation in total number of trips -- 12.3.2 Conservation in the trip-miles-traveled -- 12.3.3 Conservation in the relative number of trips -- 12.3.4 Relationship among the three conservation laws -- 12.4 Three simplification assumptions -- 12.4.1 The bathtub assumption -- Undifferentiated roads -- Characteristic travel distance and characteristic trip distance -- Characteristic curves and integral conservation equations -- 12.4.2 Network fundamental diagram -- Relationship between the vehicle density and trip density -- Network fundamental diagram of vehicular traffic -- 12.4.3 Time-independent negative exponential distribution of trip distances -- 12.5 Bathtub models -- 12.5.1 Derivation -- 12.5.2 Vickrey's bathtub model -- 12.6 Numerical methods -- 12.6.1 A numerical method for solving the integral form -- 12.6.2 A numerical method for solving the differential form -- 12.6.3 A numerical example -- Notes -- Problems -- Bibliography -- Index -- Back Cover Traffic flow Traffic flow-Mathematical models |
title | Introduction to network traffic flow theory principles, concepts, models, and methods |
title_auth | Introduction to network traffic flow theory principles, concepts, models, and methods |
title_exact_search | Introduction to network traffic flow theory principles, concepts, models, and methods |
title_exact_search_txtP | Introduction to network traffic flow theory principles, concepts, models, and methods |
title_full | Introduction to network traffic flow theory principles, concepts, models, and methods Wen-Long Jin |
title_fullStr | Introduction to network traffic flow theory principles, concepts, models, and methods Wen-Long Jin |
title_full_unstemmed | Introduction to network traffic flow theory principles, concepts, models, and methods Wen-Long Jin |
title_short | Introduction to network traffic flow theory |
title_sort | introduction to network traffic flow theory principles concepts models and methods |
title_sub | principles, concepts, models, and methods |
topic | Traffic flow Traffic flow-Mathematical models |
topic_facet | Traffic flow Traffic flow-Mathematical models |
work_keys_str_mv | AT jinwenlong introductiontonetworktrafficflowtheoryprinciplesconceptsmodelsandmethods |