Chemical reactor modeling: multiphase reactive flows
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Angekündigt als: Chemical reactor technology |
Beschreibung: | LII, 1244 S. Ill., graph. Darst. |
ISBN: | 9783540686224 9783540251972 3540251979 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035430228 | ||
003 | DE-604 | ||
005 | 20210429 | ||
007 | t | ||
008 | 090409s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 05,N09,0690 |2 dnb | ||
020 | |a 9783540686224 |9 978-3-540-68622-4 | ||
020 | |a 9783540251972 |9 978-3-540-25197-2 | ||
020 | |a 3540251979 |9 3-540-25197-9 | ||
024 | 3 | |a 9783540251972 | |
028 | 5 | 2 | |a 11370345 |
035 | |a (OCoLC)244039556 | ||
035 | |a (DE-599)BVBBV035430228 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-634 |a DE-11 |a DE-29T |a DE-83 | ||
082 | 0 | |a 660.28320153205 |2 22/ger | |
084 | |a VN 7320 |0 (DE-625)147617:253 |2 rvk | ||
084 | |a UF 4050 |0 (DE-625)145581: |2 rvk | ||
084 | |a VN 7030 |0 (DE-625)147599:253 |2 rvk | ||
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
084 | |a 540 |2 sdnb | ||
100 | 1 | |a Jakobsen, Hugo A. |d 1965- |e Verfasser |0 (DE-588)106564003X |4 aut | |
245 | 1 | 0 | |a Chemical reactor modeling |b multiphase reactive flows |c Hugo A. Jakobsen |
246 | 1 | 3 | |a Chemical reactor technology |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a LII, 1244 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Angekündigt als: Chemical reactor technology | ||
650 | 0 | 7 | |a Chemischer Reaktor |0 (DE-588)4121085-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrphasenströmung |0 (DE-588)4169315-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reagierende Strömung |0 (DE-588)4137697-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Einphasenströmung |0 (DE-588)4151367-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reaktionstechnik |0 (DE-588)4136173-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemischer Reaktor |0 (DE-588)4121085-2 |D s |
689 | 0 | 1 | |a Einphasenströmung |0 (DE-588)4151367-8 |D s |
689 | 0 | 2 | |a Reagierende Strömung |0 (DE-588)4137697-3 |D s |
689 | 0 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chemischer Reaktor |0 (DE-588)4121085-2 |D s |
689 | 1 | 1 | |a Mehrphasenströmung |0 (DE-588)4169315-2 |D s |
689 | 1 | 2 | |a Reagierende Strömung |0 (DE-588)4137697-3 |D s |
689 | 1 | 3 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Chemischer Reaktor |0 (DE-588)4121085-2 |D s |
689 | 2 | 1 | |a Reagierende Strömung |0 (DE-588)4137697-3 |D s |
689 | 2 | 2 | |a Reaktionstechnik |0 (DE-588)4136173-8 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017350632&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017350632 |
Datensatz im Suchindex
_version_ | 1804138871587340288 |
---|---|
adam_text | Contents
Part I Single Phase Flow
1
Single Phase Flow
....................................... 3
1.1
Basic Principles of Fluid Mechanics
.................... 3
1.2
Equations of Change for
Multi-
Component Mixtures
..... 8
1.2.1
Conservation of mass
......................... 15
1.2.2
Transport of species mass
..................... 19
1.2.3
Conservation of momentum
................... 24
1.2.4
Conservation of total energy
.................. 35
1.2.5
Some useful simplifications of the governing
equations
................................... 68
1.2.6
Gross Scale Average Forms of the Governing
Equations
................................... 86
1.2.7
Dispersion Models
........................... 97
1.3
Application of the Governing Equations to Turbulent Flow
99
1.3.1
Origin and Characteristics of Turbulence
....... 101
1.3.2
Statistical Turbulence Theory
................. 104
1.3.3
Reynolds Equations and Statistics
............. 117
1.3.4
Semi-Empirical Flow Analysis
................. 121
1.3.5
Reynolds Averaged Models
.................... 129
1.3.6
Large Eddy Simulation
(LES)
................. 161
References
................................................... 177
2
Elementary Kinetic Theory of Gases
..................... 187
2.1
Introduction
........................................ 187
2.2
Elementary Concepts in Classical Machanics
............ 193
2.2.1
Newtonian Mechanics
........................ 194
2.2.2
Lagrangian Mechanics
........................ 197
2.2.3
Hamiltonian Mechanics
....................... 201
2.3
Basic Concepts of Kinetic Theory
...................... 207
XLVI Contents
2.3.1
Molecular
Models............................
208
2.3.2 Phase Space, Distribution
Function, Means and
Moments
................................... 211)
2.3.3
Flux Vectors
................................ 212
2.3.4
Ideal Gas Law
............................... 217
2.4
The Boltzmann Equation
............................. 218
2.4.1
The Boltzmann Equation in the Limit of no
Collisions
................................... 219
2.4.2
Binary Collisions
............................ 223
2.4.3
Generalized Collision Term Formulation
........ 243
2.5
The Equation of Change in Terms of Mean Molecular
Properties
.......................................... 246
2.6
The Governing Equations of Fluid Dynamics
............ 249
2.7
The Boltzmann H-Theorem
........................... 252
2.7.1
The H-Theorem Formulation
.................. 252
2.7.2
The Maxwellian Velocity Distribution
.......... 254
2.7.3
The H-Theorem and Entropy
.................. 255
2.8
Solving the Boltzmann Equation
....................... 256
2.8.1
Equilibrium Flow
-
The
Euler
Equations
........ 256
2.8.2
Gradient Perturbations
-
Navier
Stokes Equations
258
2.9
Multicomponent Mixtures
............................. 262
2.10
Mean Free Path Concept
............................. 309
2.11
Extending the Kinetic Theory to Denser Gases
.......... 319
2.12
Governing Equations for Polydispersed Multiphase Systems
324
References
................................................... 327
Part II Multiphase Flow
3
Multiphase Flow
......................................... 335
3.1
Introduction
........................................ 335
3.2
Modeling Concepts for Multiphase Flow
................ 339
3.2.1
Averaged Models
............................ 340
3.2.2
High Resolution Methods
..................... 344
3.3
Basic Principles and Derivation of Multi-Fluid Models
.... 365
3.3.1
Local Instantaneous Transport Equations
....... 370
3.3.2
The Purpose of Averaging Procedures
.......... 393
3.4
Averaging Procedures
................................ 394
3.4.1
The Volume Averaging Procedure
.............. 397
3.4.2
The Time Averaging Procedure
................ 419
3.4.3
The Ensemble Averaging Procedure
............ 429
3.4.4
The Time After Volume Averaging Procedure
. .. 441
3.4.5
The Mixture Models
......................... 463
Contents XLVII
3.4.6
The Gross Scale Averaged Two-Phase Transport
Equations
................................... 473
3.4.7
Heterogeneous Dispersion Models
.............. 484
3.5
Mathematical Model Formulation Aspects
.............. 485
References
................................................... 489
4
Flows of Granular Materials
............................. 503
4.1
The Two-Fluid Granular Flow Model
................... 508
4.1.1
Collisional Rate of Change
.................... 509
4.1.2
Dynamics of Inelastic Binary Collisions
......... 514
4.1.3
Maxwell Transport Equation and Balance Laws.
. 516
4.1.4
Transport Equation in Terms of Peculiar Velocity
520
4.1.5
Initial- and Boundary Conditions for the
Granular Phase Equations
.................... 530
4.2
Remarks on the Kinetic Theory of Granular Flows
....... 531
4.2.1
Granular Flow Closure Limitations
............. 534
References
................................................... 537
5
Constitutive Equations
.................................. 543
5.1
Modeling of Multiphase Covariance Terms
.............. 545
5.1.1
Turbulence Modeling Analogues
............... 545
5.2
Interfacial
Momentum Closure
......................... 553
5.2.1
Drag force on a single rigid sphere in laminar flow
559
5.2.2
Lift forces on a single rigid sphere in laminar flow
564
5.2.3
Lift and drag on rigid spheres in turbulent flows
. 569
5.2.4
Drag force on bubbles
........................ 572
5.2.5
Lift force on bubbles
......................... 577
5.2.6
The Added mass or virtual mass force on a single
rigid sphere in potential flow
.................. 581
5.2.7
Interfacial
Momentum Transfer Due to Phase
Change
..................................... 587
5.3
Interfacial
Heat and Mass Transfer Closures
............. 588
5.3.1
Approximate
Interfacial
Jump Conditions
....... 588
5.3.2
Fundamental Heat and Mass Transport Processes
597
5.3.3
Mass Transport Described by Fick s law
........ 599
5.3.4
Heat Transfer Described by Fourier s Law
....... 604
5.3.5
Heat and Mass Transfer Coefficient Concepts
.... 605
5.3.6
Heat Transfer by Radiation
................... 635
References
................................................... 647
APPLICATIONS
............................................ 657
XLVIII
Contents
6
Chemical
Reaction Engineering
.......................... 659
6.1
Idealized Reactor Models
............................. 660
6.1.1
Plug Flow Reactor Models
.................... 660
6.1.2
Batch and Continuous Stirred Tank Reactors
.... 663
6.2
Simplified Reactor Models
............................ 665
6.3
Chemical Reaction Equilibrium Calculations
............ 666
6.3.1
Stoichiometric Formulation
................... 670
6.3.2
Non-stoichiometric formulation
................ 674
References
................................................... 677
7
Agitation and Fluid Mixing Technology
.................. 679
7.1
Tank Geometry and Impeller Design
................... 679
7.2
Fluid Shear Rates, Impeller Pumping Capacity
and Power Consumption
.............................. 684
7.2.1
Fluid shear rates
............................. 685
7.2.2
Impeller Pumping Capacity
................... 686
7.2.3
Impeller Power Consumption
.................. 687
7.2.4
Fundamental Analysis of Impeller Power
Consumption
................................ 688
7.3
Turbulent Mixing
.................................... 699
7.3.1
Studies on Turbulent Mixing
.................. 700
7.3.2
Flow Fields in Agitated Tanks
................. 703
7.3.3
Circulation and mixing times in turbulent
agitated tanks
............................... 705
7.3.4
Turbulent Reactive Flow in Stirred Tank
....... 707
7.4
Heat Transfer in Stirred Tank Reactors
................. 714
7.5
Scale-up of Single Phase Non-Reactive Turbulent Stirred
Tanks
....... ...................................... 716
7.6
Mixing of Multi-Phase Systems
........................ 717
7.7
Governing Equations in Relative and Absolute Frames
.... 723
7.7.1
Governing Eulerian Flow Equations in the
Laboratory Frame
........................... 723
7.7.2
Coriolis and Centrifugal Forces
................ 724
7.7.3
Governing Eulerian Equations in a Rotating Frame
727
7.8
Impeller Modeling Strategies
.......................... 730
7.8.1
The Impeller Boundary Conditions (IBC) Method
730
7.8.2
The Snapshot
(SS)
Method
................... 731
7.8.3
The inner-outer
(IO)
method and the multiple
reference frame approach (MRF)
.............. 732
7.8.4
The Moving Deforming Mesh
(MDM)
Technique
. 735
7.8.5
The Sliding Grid (SG) or Sliding Mesh (SM)
Method
..................................... 736
7.8.6
Model Validation
............................ 737
Contents XLIX
7.9
Assessment of Multiple Rotating Reference Frame Model
Simulations
......................................... 740
References
................................................... 751
8
Bubble Column Reactors
................................ 757
8.1
Hydrodynamics of Simple Bubble Columns
.............. 757
8.1.1
Experimental Characterization of Cylindrical
Bubble Column Flow
......................... 760
8.2
Types of Bubble Columns
............................. 764
8.3
Applications of Bubble Columns in Chemical Processes
. . . 766
8.4
Modeling of Bubble Column Reactors
.................. 767
8.4.1
Fluid Dynamic Modeling
..................... 770
8.4.2
Numerical Schemes and Algorithms
............ 791
8.4.3
Chemical Reaction Engineering
................ 793
8.4.4
Multifluid Modeling Framework
............... 794
References
................................................... 797
9
The Population Balance Equation
....................... 807
9.1
Three Alternative Population Balance Frameworks
....... 812
9.1.1
The Continuum Mechanical Approach
.......... 812
9.1.2
The Microscopic Continuum Mechanical
Population Balance Formulation
............... 835
9.1.3
The Statistical Mechanical Microscopic
Population Balance Formulation
............... 853
References
................................................... 859
10
Fluidized
Bed Reactors
.................................. 867
10.1
Solids Classification
.................................. 868
10.2
Fluidization Regimes for Gas-Solid Suspension Flow
...... 868
10.3
Reactor Design and Flow Characterization
.............. 872
10.3.1
Dense-Phase
Fluidized
Beds
................... 873
10.3.2
Lean-Phase
Fluidized
Beds
.................... 875
10.3.3
Various Types of
Fluidized
Beds
............... 880
10.3.4
Experimental Investigations
................... 880
10.4
Fluidized
Bed
Combusto™
............................ 883
10.5
Milestones in
Fluidized
Bed Reactor Technology
......... 888
10.6
Advantages and disadvantages
......................... 892
10.7
Chemical Reactor Modeling
........................... 893
10.7.1
Conventional Models for Bubbling Bed Reactors
. 894
10.7.2
Turbulent
Fluidized
Beds
..................... 911
10.7.3
Circulating
Fluidized
Beds
.................... 911
10.7.4
Simulating Bubbling Bed Combustors Using
Two-Fluid Models
........................... 915
L
Content*
10.7.5
Bubbling Bed Reactor Simulations Using
Two-Fluid Models
........................... 928
References
................................................... 945
11
Packed Bed Reactors
.................................... 953
11.1
Processes Operated in Packed Bed Reactors (PBRs)
...... 953
11.2
Packed Bed Reactor Design
........................... 954
11.3
Modeling and Simulation of Packed Bed Reactors
........ 956
11.3.1
Fixed Bed Dispersion Models
.................. 957
11.3.2
Reactor Process Simulations
.................. 964
References
................................................... 983
12
Numerical Solution Methods
............................ 985
12.1
Limitations of Numerical Methods
..................... 986
12.2
Building Blocks of a Numerical Solution Method
......... 987
12.3
Properties of Discretization Schemes
................... 989
12.4
Initial and Boundary Condition Requirements
........... 991
12.5
Discretization Approaches
............................. 993
12.5.1
The Finite Difference Method
................. 993
12.5.2
The Finite Volume Method
................... 995
12.5.3
The Method of Weighted Residuals
............ 995
12.5.4
The Finite Element Method
................... 1002
12.6
Basic Finite Volume Algorithms Used in Computational
Fluid Dynamics
..................................... 1008
12.7
Elements of the Finite Volume Method for Flow Simulations
1012
12.7.1
Numerical Approximation of Surface and Volume
Integrals
.................................... 1014
12.7.2
Solving Unsteady Problems
................... 1017
12.7.3
Approximation of the Diffusive Transport Terms
. 1022
12.7.4
Approximation of the Convective Transport Terms
1025
12.7.5
Brief Evaluation of Convection/Advection Schemes
1038
12.8
Implicit Upwind Discretization of the Scalar Transport
Equation
........................................... 1038
12.9
Solution of the Momentum Equation
................... 1040
12.9.1
Discretization of the Momentum Equations
..... 1040
12.9.2
Numerical Conservation Properties
............. 1041
12.9.3
Choice of Variable Arrangement on the Grid
.... 1043
12.9.4
Calculation of Pressure
....................... 1044
12.10
Fractional Step Methods
.............................. 1056
12.11
Finite Volume Methods for Multi-fluid Models
........... 1060
12.11.1
Special Challenges in Solving the Two-fluid
Model Equations
............................ 1061
Contents
LI
12.11.2
Explicit
Fractional Step Algorithm for Solving
the Two-Fluid Model Equations Applied to
Bubble Column Flow
......................... 1067
12.11.3
Implicit Fractional Step Method for Solving
the Two-Fluid Granular Flow Model Equations
Applied to
Fluidized
Bed Flow
................ 1070
12.11.4
Solution of Multi-fluid Models
................. 1076
12.12
Numerical Solution of the Population Balance Equation
.. 1077
12.13
Solution of Linear Equation Systems
................... 1092
12.13.1
Point-Iterative Methods
...................... 1092
12.13.2
The Tri-Diagonal Matrix Algorithm (TDMA)
. . . 1093
12.13.3
Krylov Subspace Methods
.................... 1095
12.13.4
Preconditioning
............................. 1098
12.13.5
Multigrid Solvers
............................ 1102
12.13.6
Parallelization and Performance Optimization
. . . 1105
References
................................................... 1109
Part III APPENDIX
APPENDIX
................................................. 1123
A Mathematical Theorems
................................. 1125
A.I Transport Theorem for a Single Phase Region
........... 1125
A.I.I Leibnitz s Rule
.............................. 1125
A.
1.2
Leibnitz Theorem
............................ 1126
A.1.3 Reynolds Theorem
........................... 1128
A.
2
Gauss Theorem
...................................... 1130
A.3 Surface Theorems
.................................... 1131
A.
3.1
Leibnitz Transport Theorem for a Surface
....... 1131
A.3.2 Gauss Theorem for a Surface
.................. 1132
References
................................................... 1137
В
Equation of Change for Temperature
for a Multicomponent System
........................... 1139
B.I The Problem Definition
............................... 1139
B.2 Deriving the Equation of Change for Temperature
....... 1139
References
................................................... 1145
C Trondheim
Bubble Column Model
....................... 1147
C.I Model Formulation
................................... 1147
C.2 Tensor Transformation Laws
.......................... 1157
C.2.1 Curvilinear Coordinate Systems
............... 1158
LII
Contents
C.2.2 The Tensor
Concept
......................... 1158
С.
2.3
Coordinate Transformation Prerequisites
........ 1160
C.2.4 Orthogonal Curvilinear Coordinate Systems and
Differential Operators
........................ 1162
C.2.5 Differential Operators in Cylindrical Coordinates
1165
C.2.6 Differential Operators Required for the Two-fluid
Model
...................................... 1169
C.3 Two-Fluid Equations in Cylindrical Coordinates
......... 1173
C.4 The 2D Axi-Symmetric Bubble Column Model
.......... 1176
C.4.1 Discretization of the
Trondheim
Bubble Column
Model
...................................... 1180
C.4.2 The Continuity Equation
..................... 1185
C.4.3 The Generalized equation
..................... 1187
C.4.
4
The liquid phase radial momentum balance
..... 1190
C.4.
5
The Liquid phase axial momentum balance
..... 1202
C.4.6 The gas phase radial momentum balance
....... 1211
C.4.
7
The gas phase axial momentum balance
........ 1221
C.4.8 The Turbulent Kinetic Energy
................. 1227
C.4.9 The Turbulent Kinetic Energy Dissipation Rate
. 1230
C.4.10 The Volume fraction
......................... 1231
C.4.
11
The Pressure-Velocity Correction Equations
..... 1234
References
................................................... 1237
Index
........................................................ 1239
|
any_adam_object | 1 |
author | Jakobsen, Hugo A. 1965- |
author_GND | (DE-588)106564003X |
author_facet | Jakobsen, Hugo A. 1965- |
author_role | aut |
author_sort | Jakobsen, Hugo A. 1965- |
author_variant | h a j ha haj |
building | Verbundindex |
bvnumber | BV035430228 |
classification_rvk | VN 7320 UF 4050 VN 7030 VN 7300 |
ctrlnum | (OCoLC)244039556 (DE-599)BVBBV035430228 |
dewey-full | 660.28320153205 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.28320153205 |
dewey-search | 660.28320153205 |
dewey-sort | 3660.28320153205 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02755nam a2200673 c 4500</leader><controlfield tag="001">BV035430228</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210429 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090409s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N09,0690</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540686224</subfield><subfield code="9">978-3-540-68622-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540251972</subfield><subfield code="9">978-3-540-25197-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540251979</subfield><subfield code="9">3-540-25197-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540251972</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11370345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)244039556</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035430228</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.28320153205</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7320</subfield><subfield code="0">(DE-625)147617:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4050</subfield><subfield code="0">(DE-625)145581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7030</subfield><subfield code="0">(DE-625)147599:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jakobsen, Hugo A.</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106564003X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical reactor modeling</subfield><subfield code="b">multiphase reactive flows</subfield><subfield code="c">Hugo A. Jakobsen</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Chemical reactor technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LII, 1244 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Angekündigt als: Chemical reactor technology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemischer Reaktor</subfield><subfield code="0">(DE-588)4121085-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrphasenströmung</subfield><subfield code="0">(DE-588)4169315-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reagierende Strömung</subfield><subfield code="0">(DE-588)4137697-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Einphasenströmung</subfield><subfield code="0">(DE-588)4151367-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktionstechnik</subfield><subfield code="0">(DE-588)4136173-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemischer Reaktor</subfield><subfield code="0">(DE-588)4121085-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Einphasenströmung</subfield><subfield code="0">(DE-588)4151367-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Reagierende Strömung</subfield><subfield code="0">(DE-588)4137697-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chemischer Reaktor</subfield><subfield code="0">(DE-588)4121085-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrphasenströmung</subfield><subfield code="0">(DE-588)4169315-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Reagierende Strömung</subfield><subfield code="0">(DE-588)4137697-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Chemischer Reaktor</subfield><subfield code="0">(DE-588)4121085-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Reagierende Strömung</subfield><subfield code="0">(DE-588)4137697-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Reaktionstechnik</subfield><subfield code="0">(DE-588)4136173-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017350632&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017350632</subfield></datafield></record></collection> |
id | DE-604.BV035430228 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:35:05Z |
institution | BVB |
isbn | 9783540686224 9783540251972 3540251979 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017350632 |
oclc_num | 244039556 |
open_access_boolean | |
owner | DE-703 DE-634 DE-11 DE-29T DE-83 |
owner_facet | DE-703 DE-634 DE-11 DE-29T DE-83 |
physical | LII, 1244 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Jakobsen, Hugo A. 1965- Verfasser (DE-588)106564003X aut Chemical reactor modeling multiphase reactive flows Hugo A. Jakobsen Chemical reactor technology Berlin [u.a.] Springer 2008 LII, 1244 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Angekündigt als: Chemical reactor technology Chemischer Reaktor (DE-588)4121085-2 gnd rswk-swf Mehrphasenströmung (DE-588)4169315-2 gnd rswk-swf Reagierende Strömung (DE-588)4137697-3 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Einphasenströmung (DE-588)4151367-8 gnd rswk-swf Reaktionstechnik (DE-588)4136173-8 gnd rswk-swf Chemischer Reaktor (DE-588)4121085-2 s Einphasenströmung (DE-588)4151367-8 s Reagierende Strömung (DE-588)4137697-3 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Mehrphasenströmung (DE-588)4169315-2 s Reaktionstechnik (DE-588)4136173-8 s Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017350632&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Jakobsen, Hugo A. 1965- Chemical reactor modeling multiphase reactive flows Chemischer Reaktor (DE-588)4121085-2 gnd Mehrphasenströmung (DE-588)4169315-2 gnd Reagierende Strömung (DE-588)4137697-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Einphasenströmung (DE-588)4151367-8 gnd Reaktionstechnik (DE-588)4136173-8 gnd |
subject_GND | (DE-588)4121085-2 (DE-588)4169315-2 (DE-588)4137697-3 (DE-588)4114528-8 (DE-588)4151367-8 (DE-588)4136173-8 |
title | Chemical reactor modeling multiphase reactive flows |
title_alt | Chemical reactor technology |
title_auth | Chemical reactor modeling multiphase reactive flows |
title_exact_search | Chemical reactor modeling multiphase reactive flows |
title_full | Chemical reactor modeling multiphase reactive flows Hugo A. Jakobsen |
title_fullStr | Chemical reactor modeling multiphase reactive flows Hugo A. Jakobsen |
title_full_unstemmed | Chemical reactor modeling multiphase reactive flows Hugo A. Jakobsen |
title_short | Chemical reactor modeling |
title_sort | chemical reactor modeling multiphase reactive flows |
title_sub | multiphase reactive flows |
topic | Chemischer Reaktor (DE-588)4121085-2 gnd Mehrphasenströmung (DE-588)4169315-2 gnd Reagierende Strömung (DE-588)4137697-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd Einphasenströmung (DE-588)4151367-8 gnd Reaktionstechnik (DE-588)4136173-8 gnd |
topic_facet | Chemischer Reaktor Mehrphasenströmung Reagierende Strömung Mathematisches Modell Einphasenströmung Reaktionstechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017350632&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT jakobsenhugoa chemicalreactormodelingmultiphasereactiveflows AT jakobsenhugoa chemicalreactortechnology |