Signal processing and networking for big data applications:
This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2017
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics |
Beschreibung: | Title from publisher's bibliographic system (viewed on 25 May 2017) |
Beschreibung: | 1 online resource (xii, 362 pages) |
ISBN: | 9781316408032 |
DOI: | 10.1017/9781316408032 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV044447844 | ||
003 | DE-604 | ||
005 | 20231212 | ||
007 | cr|uuu---uuuuu | ||
008 | 170811s2017 |||| o||u| ||||||eng d | ||
020 | |a 9781316408032 |9 978-1-316-40803-2 | ||
024 | 7 | |a 10.1017/9781316408032 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316408032 | ||
035 | |a (OCoLC)993875198 | ||
035 | |a (DE-599)BVBBV044447844 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 005.7 | |
100 | 1 | |a Han, Zhu |d 1974- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Signal processing and networking for big data applications |c Zhu Han, University of Houston, Mingyi Hong, Iowa State University, Dan Wang, the Hong Kong Polytechnic University |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2017 | |
300 | |a 1 online resource (xii, 362 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 25 May 2017) | ||
520 | |a This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Big data | |
650 | 4 | |a Wireless communication systems / Mathematics | |
650 | 4 | |a Signal processing / Mathematics | |
700 | 1 | |a Hong, Mingyi |e Verfasser |4 aut | |
700 | 1 | |a Wang, Dan |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, hardback |z 978-1-107-12438-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781316408032 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029848844 | ||
966 | e | |u https://doi.org/10.1017/9781316408032 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781316408032 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO_Kauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804177762011840512 |
---|---|
any_adam_object | |
author | Han, Zhu 1974- Hong, Mingyi Wang, Dan |
author_facet | Han, Zhu 1974- Hong, Mingyi Wang, Dan |
author_role | aut aut aut |
author_sort | Han, Zhu 1974- |
author_variant | z h zh m h mh d w dw |
building | Verbundindex |
bvnumber | BV044447844 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316408032 (OCoLC)993875198 (DE-599)BVBBV044447844 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1017/9781316408032 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02712nmm a2200445zc 4500</leader><controlfield tag="001">BV044447844</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">170811s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316408032</subfield><subfield code="9">978-1-316-40803-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781316408032</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316408032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)993875198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044447844</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Zhu</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Signal processing and networking for big data applications</subfield><subfield code="c">Zhu Han, University of Houston, Mingyi Hong, Iowa State University, Dan Wang, the Hong Kong Polytechnic University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 362 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 25 May 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless communication systems / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing / Mathematics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hong, Mingyi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, hardback</subfield><subfield code="z">978-1-107-12438-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781316408032</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029848844</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316408032</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781316408032</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV044447844 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:53:13Z |
institution | BVB |
isbn | 9781316408032 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029848844 |
oclc_num | 993875198 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xii, 362 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO_Kauf |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Han, Zhu 1974- Verfasser aut Signal processing and networking for big data applications Zhu Han, University of Houston, Mingyi Hong, Iowa State University, Dan Wang, the Hong Kong Polytechnic University Cambridge Cambridge University Press 2017 1 online resource (xii, 362 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 25 May 2017) This unique text helps make sense of big data in engineering applications using tools and techniques from signal processing. It presents fundamental signal processing theories and software implementations, reviews current research trends and challenges, and describes the techniques used for analysis, design and optimization. Readers will learn about key theoretical issues such as data modelling and representation, scalable and low-complexity information processing and optimization, tensor and sublinear algorithms, and deep learning and software architecture, and their application to a wide range of engineering scenarios. Applications discussed in detail include wireless networking, smart grid systems, and sensor networks and cloud computing. This is the ideal text for researchers and practising engineers wanting to solve practical problems involving large amounts of data, and for students looking to grasp the fundamentals of big data analytics Mathematik Big data Wireless communication systems / Mathematics Signal processing / Mathematics Hong, Mingyi Verfasser aut Wang, Dan Verfasser aut Erscheint auch als Druck-Ausgabe, hardback 978-1-107-12438-7 https://doi.org/10.1017/9781316408032 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Han, Zhu 1974- Hong, Mingyi Wang, Dan Signal processing and networking for big data applications Mathematik Big data Wireless communication systems / Mathematics Signal processing / Mathematics |
title | Signal processing and networking for big data applications |
title_auth | Signal processing and networking for big data applications |
title_exact_search | Signal processing and networking for big data applications |
title_full | Signal processing and networking for big data applications Zhu Han, University of Houston, Mingyi Hong, Iowa State University, Dan Wang, the Hong Kong Polytechnic University |
title_fullStr | Signal processing and networking for big data applications Zhu Han, University of Houston, Mingyi Hong, Iowa State University, Dan Wang, the Hong Kong Polytechnic University |
title_full_unstemmed | Signal processing and networking for big data applications Zhu Han, University of Houston, Mingyi Hong, Iowa State University, Dan Wang, the Hong Kong Polytechnic University |
title_short | Signal processing and networking for big data applications |
title_sort | signal processing and networking for big data applications |
topic | Mathematik Big data Wireless communication systems / Mathematics Signal processing / Mathematics |
topic_facet | Mathematik Big data Wireless communication systems / Mathematics Signal processing / Mathematics |
url | https://doi.org/10.1017/9781316408032 |
work_keys_str_mv | AT hanzhu signalprocessingandnetworkingforbigdataapplications AT hongmingyi signalprocessingandnetworkingforbigdataapplications AT wangdan signalprocessingandnetworkingforbigdataapplications |