Improved sampling with applications to dynamic graph algorithms:
Abstract: "We state a new sampling lemma and use it to improve the running time of dynamic graph algorithms. For the dynamic connectivity problem the previously best randomized algorithm takes expected time O(log³ n) per update, amortized over [omega](m) updates. Using the new sampling lemma, w...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
København
1995
|
Schriftenreihe: | Datalogisk Institut <København>: DIKU-Rapport
1995,26 |
Schlagworte: | |
Zusammenfassung: | Abstract: "We state a new sampling lemma and use it to improve the running time of dynamic graph algorithms. For the dynamic connectivity problem the previously best randomized algorithm takes expected time O(log³ n) per update, amortized over [omega](m) updates. Using the new sampling lemma, we improve its running time to O(log² n) on a RAM and O(log² n (1 + [epsilon][superscript log*n] / [epsilon]³ = O(log[superscript 2 + o(1)]n) on a pointer machine, where 0 <[epsilon] [<or =] 1. There exists a lower bound in the cell probe model for the time per operation of [omega](log n/ log log n) for this problem. Improved running times are achieved for the following dynamic problems: (1) O(log³ n) to maintain the bridges in a graph (the 2-edge connectivity problem); (2) O(k log² n) to maintain a minimum spanning tree in a graph with k different weights (the k-weight minimum spanning tree problem); (3) O(log² n log U/[epsilon]') to maintain a spanning tree whose weight is a (1 + [epsilon]')-approximation of the weight of the minimum spanning tree, where U is the maximum weight in the graph (the (1 + [epsilon]')-approximate minimum spanning tree problem); and (4) O(log² n) to test if the graph is bipartite (the bipartiteness-testing problem)." |
Beschreibung: | 9 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011046431 | ||
003 | DE-604 | ||
005 | 19971219 | ||
007 | t | ||
008 | 961108s1995 |||| 00||| engod | ||
035 | |a (OCoLC)38435081 | ||
035 | |a (DE-599)BVBBV011046431 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Henzinger, Monika R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Improved sampling with applications to dynamic graph algorithms |c Monika R. Henzinger & Mikkel Thorup |
264 | 1 | |a København |c 1995 | |
300 | |a 9 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Datalogisk Institut <København>: DIKU-Rapport |v 1995,26 | |
520 | 3 | |a Abstract: "We state a new sampling lemma and use it to improve the running time of dynamic graph algorithms. For the dynamic connectivity problem the previously best randomized algorithm takes expected time O(log³ n) per update, amortized over [omega](m) updates. Using the new sampling lemma, we improve its running time to O(log² n) on a RAM and O(log² n (1 + [epsilon][superscript log*n] / [epsilon]³ = O(log[superscript 2 + o(1)]n) on a pointer machine, where 0 <[epsilon] [<or =] 1. There exists a lower bound in the cell probe model for the time per operation of [omega](log n/ log log n) for this problem. Improved running times are achieved for the following dynamic problems: (1) O(log³ n) to maintain the bridges in a graph (the 2-edge connectivity problem); (2) O(k log² n) to maintain a minimum spanning tree in a graph with k different weights (the k-weight minimum spanning tree problem); (3) O(log² n log U/[epsilon]') to maintain a spanning tree whose weight is a (1 + [epsilon]')-approximation of the weight of the minimum spanning tree, where U is the maximum weight in the graph (the (1 + [epsilon]')-approximate minimum spanning tree problem); and (4) O(log² n) to test if the graph is bipartite (the bipartiteness-testing problem)." | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Machine theory | |
650 | 4 | |a Sampling (Statistics) | |
700 | 1 | |a Thorup, Mikkel |d 1973- |e Verfasser |0 (DE-588)1044557877 |4 aut | |
830 | 0 | |a Datalogisk Institut <København>: DIKU-Rapport |v 1995,26 |w (DE-604)BV010011493 |9 1995,26 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-007397365 |
Datensatz im Suchindex
_version_ | 1804125536195182592 |
---|---|
any_adam_object | |
author | Henzinger, Monika R. Thorup, Mikkel 1973- |
author_GND | (DE-588)1044557877 |
author_facet | Henzinger, Monika R. Thorup, Mikkel 1973- |
author_role | aut aut |
author_sort | Henzinger, Monika R. |
author_variant | m r h mr mrh m t mt |
building | Verbundindex |
bvnumber | BV011046431 |
ctrlnum | (OCoLC)38435081 (DE-599)BVBBV011046431 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02305nam a2200325 cb4500</leader><controlfield tag="001">BV011046431</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19971219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">961108s1995 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38435081</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011046431</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Henzinger, Monika R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved sampling with applications to dynamic graph algorithms</subfield><subfield code="c">Monika R. Henzinger & Mikkel Thorup</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">København</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Datalogisk Institut <København>: DIKU-Rapport</subfield><subfield code="v">1995,26</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "We state a new sampling lemma and use it to improve the running time of dynamic graph algorithms. For the dynamic connectivity problem the previously best randomized algorithm takes expected time O(log³ n) per update, amortized over [omega](m) updates. Using the new sampling lemma, we improve its running time to O(log² n) on a RAM and O(log² n (1 + [epsilon][superscript log*n] / [epsilon]³ = O(log[superscript 2 + o(1)]n) on a pointer machine, where 0 <[epsilon] [<or =] 1. There exists a lower bound in the cell probe model for the time per operation of [omega](log n/ log log n) for this problem. Improved running times are achieved for the following dynamic problems: (1) O(log³ n) to maintain the bridges in a graph (the 2-edge connectivity problem); (2) O(k log² n) to maintain a minimum spanning tree in a graph with k different weights (the k-weight minimum spanning tree problem); (3) O(log² n log U/[epsilon]') to maintain a spanning tree whose weight is a (1 + [epsilon]')-approximation of the weight of the minimum spanning tree, where U is the maximum weight in the graph (the (1 + [epsilon]')-approximate minimum spanning tree problem); and (4) O(log² n) to test if the graph is bipartite (the bipartiteness-testing problem)."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sampling (Statistics)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thorup, Mikkel</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1044557877</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Datalogisk Institut <København>: DIKU-Rapport</subfield><subfield code="v">1995,26</subfield><subfield code="w">(DE-604)BV010011493</subfield><subfield code="9">1995,26</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007397365</subfield></datafield></record></collection> |
id | DE-604.BV011046431 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T18:03:07Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007397365 |
oclc_num | 38435081 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 9 S. |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
record_format | marc |
series | Datalogisk Institut <København>: DIKU-Rapport |
series2 | Datalogisk Institut <København>: DIKU-Rapport |
spelling | Henzinger, Monika R. Verfasser aut Improved sampling with applications to dynamic graph algorithms Monika R. Henzinger & Mikkel Thorup København 1995 9 S. txt rdacontent n rdamedia nc rdacarrier Datalogisk Institut <København>: DIKU-Rapport 1995,26 Abstract: "We state a new sampling lemma and use it to improve the running time of dynamic graph algorithms. For the dynamic connectivity problem the previously best randomized algorithm takes expected time O(log³ n) per update, amortized over [omega](m) updates. Using the new sampling lemma, we improve its running time to O(log² n) on a RAM and O(log² n (1 + [epsilon][superscript log*n] / [epsilon]³ = O(log[superscript 2 + o(1)]n) on a pointer machine, where 0 <[epsilon] [<or =] 1. There exists a lower bound in the cell probe model for the time per operation of [omega](log n/ log log n) for this problem. Improved running times are achieved for the following dynamic problems: (1) O(log³ n) to maintain the bridges in a graph (the 2-edge connectivity problem); (2) O(k log² n) to maintain a minimum spanning tree in a graph with k different weights (the k-weight minimum spanning tree problem); (3) O(log² n log U/[epsilon]') to maintain a spanning tree whose weight is a (1 + [epsilon]')-approximation of the weight of the minimum spanning tree, where U is the maximum weight in the graph (the (1 + [epsilon]')-approximate minimum spanning tree problem); and (4) O(log² n) to test if the graph is bipartite (the bipartiteness-testing problem)." Algorithms Machine theory Sampling (Statistics) Thorup, Mikkel 1973- Verfasser (DE-588)1044557877 aut Datalogisk Institut <København>: DIKU-Rapport 1995,26 (DE-604)BV010011493 1995,26 |
spellingShingle | Henzinger, Monika R. Thorup, Mikkel 1973- Improved sampling with applications to dynamic graph algorithms Datalogisk Institut <København>: DIKU-Rapport Algorithms Machine theory Sampling (Statistics) |
title | Improved sampling with applications to dynamic graph algorithms |
title_auth | Improved sampling with applications to dynamic graph algorithms |
title_exact_search | Improved sampling with applications to dynamic graph algorithms |
title_full | Improved sampling with applications to dynamic graph algorithms Monika R. Henzinger & Mikkel Thorup |
title_fullStr | Improved sampling with applications to dynamic graph algorithms Monika R. Henzinger & Mikkel Thorup |
title_full_unstemmed | Improved sampling with applications to dynamic graph algorithms Monika R. Henzinger & Mikkel Thorup |
title_short | Improved sampling with applications to dynamic graph algorithms |
title_sort | improved sampling with applications to dynamic graph algorithms |
topic | Algorithms Machine theory Sampling (Statistics) |
topic_facet | Algorithms Machine theory Sampling (Statistics) |
volume_link | (DE-604)BV010011493 |
work_keys_str_mv | AT henzingermonikar improvedsamplingwithapplicationstodynamicgraphalgorithms AT thorupmikkel improvedsamplingwithapplicationstodynamicgraphalgorithms |