Boosting for generic 2D/3D object recognition:
Generic object recognition is an important function of the human visual system. For an artificial vision system to be able to emulate the human perception abilities, it should also be able to perform generic object recognition. In this thesis, we address the generic object recognition problem and pr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[2010]
|
Schlagworte: | |
Online-Zugang: | https://nbn-resolving.org/urn:nbn:de:gbv:27-20100209-143503-7 Volltext http://d-nb.info/1001518209/34 |
Zusammenfassung: | Generic object recognition is an important function of the human visual system. For an artificial vision system to be able to emulate the human perception abilities, it should also be able to perform generic object recognition. In this thesis, we address the generic object recognition problem and present different approaches and models which tackle different aspects of this difficult problem. First, we present a model for generic 2D object recognition from complex 2D images. The model exploits only appearance-based information, in the form of a combination of texture and color cues, for binary classification of 2D object classes. Learning is accomplished in a weakly supervised manner using Boosting. However, we live in a 3D world and the ability to recognize 3D objects is very important for any vision system. Therefore, we present a model for generic recognition of 3D objects from range images. Our model makes use of a combination of simple local shape descriptors extracted from range images for recognizing 3D object categories, as shape is an important information provided by range images. Moreover, we present a novel dataset for generic object recognition that provides 2D and range images about different object classes using a Time-of-Flight (ToF) camera. As the surrounding world contains thousands of different object categories, recognizing many different object classes is important as well. Therefore, we extend our generic 3D object recognition model to deal with the multi-class learning and recognition task. Moreover, we extend the multi-class recognition model by introducing a novel model which uses a combination of appearance-based information extracted from 2D images and range-based (shape) information extracted from range images for multi-class generic 3D object recognition and promising results are obtained. |
Beschreibung: | 1 Online-Ressource |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV036428507 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 100428s2010 |||| o||u| ||||||eng d | ||
016 | 7 | |a 1001518209 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:gbv:27-20100209-143503-7 |2 urn | |
035 | |a (OCoLC)634641499 | ||
035 | |a (DE-599)DNB1001518209 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-29 | ||
084 | |a ST 230 |0 (DE-625)143617: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Hegazy, Doaa Abd al-Kareem Mohammed |d 1979- |e Verfasser |0 (DE-588)140992200 |4 aut | |
245 | 1 | 0 | |a Boosting for generic 2D/3D object recognition |c von Doaa Abd Al-Kareem Mohammed Hegazy |
264 | 1 | |c [2010] | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |a Jena, Univ., Diss., 2009 | ||
520 | |a Generic object recognition is an important function of the human visual system. For an artificial vision system to be able to emulate the human perception abilities, it should also be able to perform generic object recognition. In this thesis, we address the generic object recognition problem and present different approaches and models which tackle different aspects of this difficult problem. First, we present a model for generic 2D object recognition from complex 2D images. The model exploits only appearance-based information, in the form of a combination of texture and color cues, for binary classification of 2D object classes. Learning is accomplished in a weakly supervised manner using Boosting. However, we live in a 3D world and the ability to recognize 3D objects is very important for any vision system. Therefore, we present a model for generic recognition of 3D objects from range images. Our model makes use of a combination of simple local shape descriptors extracted from range images for recognizing 3D object categories, as shape is an important information provided by range images. Moreover, we present a novel dataset for generic object recognition that provides 2D and range images about different object classes using a Time-of-Flight (ToF) camera. As the surrounding world contains thousands of different object categories, recognizing many different object classes is important as well. Therefore, we extend our generic 3D object recognition model to deal with the multi-class learning and recognition task. Moreover, we extend the multi-class recognition model by introducing a novel model which uses a combination of appearance-based information extracted from 2D images and range-based (shape) information extracted from range images for multi-class generic 3D object recognition and promising results are obtained. | ||
650 | 0 | 7 | |a Boosting |0 (DE-588)4839853-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Objekterkennung |0 (DE-588)4314334-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Generische Programmierung |0 (DE-588)4431718-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Objekterkennung |0 (DE-588)4314334-9 |D s |
689 | 0 | 1 | |a Boosting |0 (DE-588)4839853-6 |D s |
689 | 0 | 2 | |a Generische Programmierung |0 (DE-588)4431718-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u https://nbn-resolving.org/urn:nbn:de:gbv:27-20100209-143503-7 |x Resolving-System | |
856 | 4 | 0 | |q PDF |u http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-19707/Hegazy/dissertation.pdf |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | |u http://d-nb.info/1001518209/34 |x Langzeitarchivierung Nationalbibliothek | |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020301142 |
Datensatz im Suchindex
_version_ | 1804142904824823808 |
---|---|
any_adam_object | |
author | Hegazy, Doaa Abd al-Kareem Mohammed 1979- |
author_GND | (DE-588)140992200 |
author_facet | Hegazy, Doaa Abd al-Kareem Mohammed 1979- |
author_role | aut |
author_sort | Hegazy, Doaa Abd al-Kareem Mohammed 1979- |
author_variant | d a a k m h daakm daakmh |
building | Verbundindex |
bvnumber | BV036428507 |
classification_rvk | ST 230 |
collection | ebook |
ctrlnum | (OCoLC)634641499 (DE-599)DNB1001518209 |
discipline | Informatik |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03637nmm a2200469 c 4500</leader><controlfield tag="001">BV036428507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100428s2010 |||| o||u| ||||||eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1001518209</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:gbv:27-20100209-143503-7</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634641499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1001518209</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 230</subfield><subfield code="0">(DE-625)143617:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hegazy, Doaa Abd al-Kareem Mohammed</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140992200</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosting for generic 2D/3D object recognition</subfield><subfield code="c">von Doaa Abd Al-Kareem Mohammed Hegazy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">[2010]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Jena, Univ., Diss., 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Generic object recognition is an important function of the human visual system. For an artificial vision system to be able to emulate the human perception abilities, it should also be able to perform generic object recognition. In this thesis, we address the generic object recognition problem and present different approaches and models which tackle different aspects of this difficult problem. First, we present a model for generic 2D object recognition from complex 2D images. The model exploits only appearance-based information, in the form of a combination of texture and color cues, for binary classification of 2D object classes. Learning is accomplished in a weakly supervised manner using Boosting. However, we live in a 3D world and the ability to recognize 3D objects is very important for any vision system. Therefore, we present a model for generic recognition of 3D objects from range images. Our model makes use of a combination of simple local shape descriptors extracted from range images for recognizing 3D object categories, as shape is an important information provided by range images. Moreover, we present a novel dataset for generic object recognition that provides 2D and range images about different object classes using a Time-of-Flight (ToF) camera. As the surrounding world contains thousands of different object categories, recognizing many different object classes is important as well. Therefore, we extend our generic 3D object recognition model to deal with the multi-class learning and recognition task. Moreover, we extend the multi-class recognition model by introducing a novel model which uses a combination of appearance-based information extracted from 2D images and range-based (shape) information extracted from range images for multi-class generic 3D object recognition and promising results are obtained.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boosting</subfield><subfield code="0">(DE-588)4839853-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Generische Programmierung</subfield><subfield code="0">(DE-588)4431718-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Objekterkennung</subfield><subfield code="0">(DE-588)4314334-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Boosting</subfield><subfield code="0">(DE-588)4839853-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Generische Programmierung</subfield><subfield code="0">(DE-588)4431718-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">https://nbn-resolving.org/urn:nbn:de:gbv:27-20100209-143503-7</subfield><subfield code="x">Resolving-System</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">PDF</subfield><subfield code="u">http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-19707/Hegazy/dissertation.pdf</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://d-nb.info/1001518209/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020301142</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV036428507 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:39:11Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020301142 |
oclc_num | 634641499 |
open_access_boolean | 1 |
owner | DE-384 DE-29 |
owner_facet | DE-384 DE-29 |
physical | 1 Online-Ressource |
psigel | ebook |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
record_format | marc |
spelling | Hegazy, Doaa Abd al-Kareem Mohammed 1979- Verfasser (DE-588)140992200 aut Boosting for generic 2D/3D object recognition von Doaa Abd Al-Kareem Mohammed Hegazy [2010] 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Jena, Univ., Diss., 2009 Generic object recognition is an important function of the human visual system. For an artificial vision system to be able to emulate the human perception abilities, it should also be able to perform generic object recognition. In this thesis, we address the generic object recognition problem and present different approaches and models which tackle different aspects of this difficult problem. First, we present a model for generic 2D object recognition from complex 2D images. The model exploits only appearance-based information, in the form of a combination of texture and color cues, for binary classification of 2D object classes. Learning is accomplished in a weakly supervised manner using Boosting. However, we live in a 3D world and the ability to recognize 3D objects is very important for any vision system. Therefore, we present a model for generic recognition of 3D objects from range images. Our model makes use of a combination of simple local shape descriptors extracted from range images for recognizing 3D object categories, as shape is an important information provided by range images. Moreover, we present a novel dataset for generic object recognition that provides 2D and range images about different object classes using a Time-of-Flight (ToF) camera. As the surrounding world contains thousands of different object categories, recognizing many different object classes is important as well. Therefore, we extend our generic 3D object recognition model to deal with the multi-class learning and recognition task. Moreover, we extend the multi-class recognition model by introducing a novel model which uses a combination of appearance-based information extracted from 2D images and range-based (shape) information extracted from range images for multi-class generic 3D object recognition and promising results are obtained. Boosting (DE-588)4839853-6 gnd rswk-swf Objekterkennung (DE-588)4314334-9 gnd rswk-swf Generische Programmierung (DE-588)4431718-9 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Objekterkennung (DE-588)4314334-9 s Boosting (DE-588)4839853-6 s Generische Programmierung (DE-588)4431718-9 s DE-604 https://nbn-resolving.org/urn:nbn:de:gbv:27-20100209-143503-7 Resolving-System PDF http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-19707/Hegazy/dissertation.pdf Verlag kostenfrei Volltext http://d-nb.info/1001518209/34 Langzeitarchivierung Nationalbibliothek |
spellingShingle | Hegazy, Doaa Abd al-Kareem Mohammed 1979- Boosting for generic 2D/3D object recognition Boosting (DE-588)4839853-6 gnd Objekterkennung (DE-588)4314334-9 gnd Generische Programmierung (DE-588)4431718-9 gnd |
subject_GND | (DE-588)4839853-6 (DE-588)4314334-9 (DE-588)4431718-9 (DE-588)4113937-9 |
title | Boosting for generic 2D/3D object recognition |
title_auth | Boosting for generic 2D/3D object recognition |
title_exact_search | Boosting for generic 2D/3D object recognition |
title_full | Boosting for generic 2D/3D object recognition von Doaa Abd Al-Kareem Mohammed Hegazy |
title_fullStr | Boosting for generic 2D/3D object recognition von Doaa Abd Al-Kareem Mohammed Hegazy |
title_full_unstemmed | Boosting for generic 2D/3D object recognition von Doaa Abd Al-Kareem Mohammed Hegazy |
title_short | Boosting for generic 2D/3D object recognition |
title_sort | boosting for generic 2d 3d object recognition |
topic | Boosting (DE-588)4839853-6 gnd Objekterkennung (DE-588)4314334-9 gnd Generische Programmierung (DE-588)4431718-9 gnd |
topic_facet | Boosting Objekterkennung Generische Programmierung Hochschulschrift |
url | https://nbn-resolving.org/urn:nbn:de:gbv:27-20100209-143503-7 http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-19707/Hegazy/dissertation.pdf http://d-nb.info/1001518209/34 |
work_keys_str_mv | AT hegazydoaaabdalkareemmohammed boostingforgeneric2d3dobjectrecognition |