Exact boundary controllability of nodal profile for quasilinear hyperbolic systems:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2016]
|
Schriftenreihe: | SpringerBriefs in mathematics
|
Schlagworte: | |
Online-Zugang: | BTU01 FHR01 FRO01 TUM01 UBM01 UBT01 UBW01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online Ressource (IX, 108 Seiten, 27 illus) |
ISBN: | 9789811028427 |
ISSN: | 2191-8198 |
DOI: | 10.1007/978-981-10-2842-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043932767 | ||
003 | DE-604 | ||
005 | 20220311 | ||
007 | cr|uuu---uuuuu | ||
008 | 161205s2016 |||| o||u| ||||||eng d | ||
020 | |a 9789811028427 |c Online |9 978-981-10-2842-7 | ||
024 | 7 | |a 10.1007/978-981-10-2842-7 |2 doi | |
035 | |a (ZDB-2-SMA)978-981-10-2842-7 | ||
035 | |a (OCoLC)965661360 | ||
035 | |a (DE-599)BVBBV043932767 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-898 |a DE-861 |a DE-703 |a DE-824 |a DE-83 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Li, Tatsien |e Verfasser |4 aut | |
245 | 1 | 0 | |a Exact boundary controllability of nodal profile for quasilinear hyperbolic systems |c Tatsien Li, Ke Wang, Qilong Gu |
264 | 1 | |a Singapore |b Springer |c [2016] | |
300 | |a 1 Online Ressource (IX, 108 Seiten, 27 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in mathematics |x 2191-8198 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a System theory | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Wang, Ke |e Verfasser |4 aut | |
700 | 1 | |a Gu, Qilong |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-981-10-2841-0 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-981-10-2842-7 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2016 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-029341781 | ||
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-981-10-2842-7 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176866105360384 |
---|---|
any_adam_object | |
author | Li, Tatsien Wang, Ke Gu, Qilong |
author_facet | Li, Tatsien Wang, Ke Gu, Qilong |
author_role | aut aut aut |
author_sort | Li, Tatsien |
author_variant | t l tl k w kw q g qg |
building | Verbundindex |
bvnumber | BV043932767 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)978-981-10-2842-7 (OCoLC)965661360 (DE-599)BVBBV043932767 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-981-10-2842-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02461nmm a2200565zc 4500</leader><controlfield tag="001">BV043932767</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220311 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161205s2016 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811028427</subfield><subfield code="c">Online</subfield><subfield code="9">978-981-10-2842-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-981-10-2842-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)978-981-10-2842-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)965661360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043932767</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Tatsien</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact boundary controllability of nodal profile for quasilinear hyperbolic systems</subfield><subfield code="c">Tatsien Li, Ke Wang, Qilong Gu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (IX, 108 Seiten, 27 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in mathematics</subfield><subfield code="x">2191-8198</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">System theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ke</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Qilong</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-981-10-2841-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2016</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029341781</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-981-10-2842-7</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043932767 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:38:59Z |
institution | BVB |
isbn | 9789811028427 |
issn | 2191-8198 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029341781 |
oclc_num | 965661360 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-898 DE-BY-UBR DE-861 DE-703 DE-824 DE-83 |
physical | 1 Online Ressource (IX, 108 Seiten, 27 illus) |
psigel | ZDB-2-SMA ZDB-2-SMA_2016 |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
series2 | SpringerBriefs in mathematics |
spelling | Li, Tatsien Verfasser aut Exact boundary controllability of nodal profile for quasilinear hyperbolic systems Tatsien Li, Ke Wang, Qilong Gu Singapore Springer [2016] 1 Online Ressource (IX, 108 Seiten, 27 illus) txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in mathematics 2191-8198 Mathematics Partial differential equations System theory Systems Theory, Control Partial Differential Equations Mathematik Wang, Ke Verfasser aut Gu, Qilong Verfasser aut Erscheint auch als Druck-Ausgabe 978-981-10-2841-0 https://doi.org/10.1007/978-981-10-2842-7 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Li, Tatsien Wang, Ke Gu, Qilong Exact boundary controllability of nodal profile for quasilinear hyperbolic systems Mathematics Partial differential equations System theory Systems Theory, Control Partial Differential Equations Mathematik |
title | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems |
title_auth | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems |
title_exact_search | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems |
title_full | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems Tatsien Li, Ke Wang, Qilong Gu |
title_fullStr | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems Tatsien Li, Ke Wang, Qilong Gu |
title_full_unstemmed | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems Tatsien Li, Ke Wang, Qilong Gu |
title_short | Exact boundary controllability of nodal profile for quasilinear hyperbolic systems |
title_sort | exact boundary controllability of nodal profile for quasilinear hyperbolic systems |
topic | Mathematics Partial differential equations System theory Systems Theory, Control Partial Differential Equations Mathematik |
topic_facet | Mathematics Partial differential equations System theory Systems Theory, Control Partial Differential Equations Mathematik |
url | https://doi.org/10.1007/978-981-10-2842-7 |
work_keys_str_mv | AT litatsien exactboundarycontrollabilityofnodalprofileforquasilinearhyperbolicsystems AT wangke exactboundarycontrollabilityofnodalprofileforquasilinearhyperbolicsystems AT guqilong exactboundarycontrollabilityofnodalprofileforquasilinearhyperbolicsystems |