Physics of planetary rings: celestial mechanics of continuous media
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1999
|
Schriftenreihe: | Astronomy and astrophysics library
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 419 - 427 |
Beschreibung: | XXI, 436 S. Ill., graph. Darst. |
ISBN: | 354064864X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV012457828 | ||
003 | DE-604 | ||
005 | 20000209 | ||
007 | t | ||
008 | 990309s1999 gw ad|| |||| 00||| ger d | ||
016 | 7 | |a 955710413 |2 DE-101 | |
020 | |a 354064864X |c Pp. : DM 139.00 |9 3-540-64864-X | ||
035 | |a (OCoLC)632945610 | ||
035 | |a (DE-599)BVBBV012457828 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-19 |a DE-11 | ||
084 | |a US 8000 |0 (DE-625)146732: |2 rvk | ||
100 | 1 | |a Fridman, Aleksej Maksimovič |d 1940-2010 |e Verfasser |0 (DE-588)1032927208 |4 aut | |
240 | 1 | 0 | |a Fizika planetnych kolets |
245 | 1 | 0 | |a Physics of planetary rings |b celestial mechanics of continuous media |c A. M. Fridman ; N. N. Gorkavyi |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1999 | |
300 | |a XXI, 436 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Astronomy and astrophysics library | |
500 | |a Literaturverz. S. 419 - 427 | ||
650 | 0 | 7 | |a Himmelsmechanik |0 (DE-588)4127484-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Planetarer Ring |0 (DE-588)4385093-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Planetarer Ring |0 (DE-588)4385093-5 |D s |
689 | 0 | 1 | |a Himmelsmechanik |0 (DE-588)4127484-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gor'kavji, Nikolaj N. |d 1959- |e Verfasser |0 (DE-588)120807955 |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008453963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-008453963 |
Datensatz im Suchindex
_version_ | 1804127096701714432 |
---|---|
adam_text | A. M. FRIDMAN * N. N. GORKAVYI PHYSICS OF PLANETARY RINGS CELESTIAL
MECHANICS OF CONTINUOUS MEDIA TRANSLATED BY D. TER HAAR WITH 125 FIGURES
AND 29 TABLES SPRINGER TABLE OF CONTENTS 1. INTRODUCTION 1 1.1 RINGS AS
CHARACTERISTIC FEATURES OF ASTROPHYSICAL DISCS .... 1 1.2 THE PLANETARY
RINGS AS UNIQUE DISC SYSTEMS 4 1.3 THE PLANETARY RINGS AS A PROVING
GROUND FOR THEORISTS ... 5 1.4 HISTORICAL JOURNEY 6 2. OBSERVATIONAL
DATA 21 2.1 THE SATURNIAN SYSTEM 21 2.2 THE URANIAN SYSTEM 35 2.3 THE
JOVIAN SYSTEM 40 2.4 THE NEPTUNIAN SYSTEM 42 2.5 THE SOLAR SYSTEM 45 2.6
ACCRETION DISCS 46 2.7 GALACTIC DISCS 49 2.8 COMPARATIVE ANALYSIS 51
2.8.1 PRIMARY AND SECONDARY RINGS 51 2.8.2 DENSITY DISTRIBUTION IN THE
SYSTEMS OF THE GIANT PLANETS 52 2.8.3 DISSIPATION IN A DISC SYSTEM 54
2.8.4 TABLE OF THE PARAMETERS OF DISC SYSTEMS 57 3. CELESTIAL MECHANICS
MINIMUM 59 3.1 BASIC EQUATIONS 59 3.2 SOLUTION FOR A SINGLE POINT
PARTICLE 62 3.3 MAIN PERTURBING FACTORS 68 3.3.1 EQUATIONS FOR THE
OSCULATING ORBITAL ELEMENTS 68 3.3.2 SATELLITE ORBIT IN THE FIELD OF AN
ASPHERICAL PLANET . 74 3.3.3 EFFECT OF AERODYNAMIC FRICTION ON THE ORBIT
OF A SATELLITE 76 3.3.4 THE POYNTING-ROBERTSON EFFECT 77 3.3.5
COLLISIONS AND PARTICLE ORBITS 78 XVI CONTENTS 4. ELEMENTARY PARTICLE
DYNAMICS. I RIGID BODY COLLISIONS . 81 4.1 THEORETICAL MODELS 82 4.1.1
SOME RELATIONS FROM THE THEORY OF THE COLLISIONS OF SMOOTH SPHERES 82
4.1.2 BREAK-UP OF RING PARTICLES (ESTIMATES) -. . - 84 4.1.3 MODEL OF
COLLISIONS BETWEEN PARTICLES COVERED BY REGOLITH 85 4.1.4 RESTITUTION
COEFFICIENT OF A SMOOTH PARTICLE 86 4.2 EXPERIMENTAL DATA 87 4.2.1
COMPARISON BETWEEN THE SMOOTH PARTICLE MODEL AND THE EXPERIMENTAL DATA
87 4.2.2 RESTITUTION COEFFICIENT OF PARTICLES COVERED BY A REGOLITH
LAYER 90 5. ELEMENTARY PARTICLE DYNAMICS. II RING COSMOGONY 95 5.1 TIDES
OR COLLISIONS? 95 5.1.1 DISCUSSION OF THE TRADITIONAL POINT OF VIEW THAT
THE REGION OF THE PRIMARY RINGS IS THE ROCHE ZONE . 96 5.1.2 COLLISIONAL
BREAK-UP OF PARTICLES IN GRAZING COLLISIONS 98 5.2 DYNAMICS OF PARTICLE
FRAGMENTS IN THE FOUR-BODY PROBLEM . 100 5.3 COLLISIONAL BREAK-UP OF
LOOSE BODIES AS THE CAUSE FOR THE EXISTENCE OF PLANETARY RINGS 109 5.4
PARTICLE SIZE DISTRIBUTION 113 6. ELEMENTARY PARTICLE DYNAMICS. ILL
WAVE, PHOTOMETRIC, AND OTHER EFFECTS 115 6.1 A SATELLITE IN A
DIFFERENTIALLY ROTATING DISC 115 6.2 TWO LARGE BODIES IN A DISC OF SMALL
PARTICLES 118 6.3 WANDERER PARTICLES IN THE FOUR-BODY PROBLEM ; . . . .
120 6.4 AZIMUTHAL BRIGHTNESS ASYMMETRY OF THE SATURNIAN RINGS . . 122 7.
COLLECTIVE DYNAMICS OF DISC PARTICLES. I FORMALISM 131 7.1 TRANSPORT
THEORIES FOR MACROPARTICLES 131 7.1.1 THE LARMOR THEOREM FOR A PARTICLE
IN A GRAVITATIONAL FIELD 134 7.L2 DERIVATION OF THE MOMENT EQUATIONS 135
7.1.3 INTEGRO-DIFFERENTIAL EQUATION FOR THE NON-EQUILIBRIUM CORRECTION
TO THE DISTRIBUTION FUNCTION 137 7.1.4 EVALUATION OF THE VECTORIAL
NON-EQUILIBRIUM CORRECTION TO THE DISTRIBUTION FUNCTION. THE HEAT FLUX
VECTOR 140 CONTENTS XVII 7.1.5 EVALUATION OF THE TENSOR NON-EQUILIBRIUM
CORRECTION TO THE DISTRIBUTION FUNCTION. THE VISCOUS STRESS TENSOR 142
7.2 KINETIC THEORY OF INELASTIC MACROPARTICLES 145 8. COLLECTIVE
DYNAMICS OF DISC PARTICLES. II STABILITY ANALYSIS 153 8.1 GENERAL
DISPERSION EQUATION 153 8.1.1 STABILITY OF A UNIFORMLY ROTATING DISC 155
8.1.2 A DIFFERENTIALLY ROTATING DISC OF INELASTIC PARTICLES . 159 8.2
ANALYSIS OF THE AXISYMMETRIC OSCILLATIONS OF A DISC; INSTABILITIES
CAUSING THE SMALL- AND MEDIUM-SCALE STRUCTURE OF THE RINGS 163 8.2.1
GRAVITATIONAL INSTABILITY 163 8.2.2 ENERGY (THERMAL) INSTABILITY 164
8.2.3 NEGATIVE DIFFUSION INSTABILITY 165 8.2.4 ANALYSIS OF THE
DISPERSION EQUATION 166 8.2.5 CRITERIA FOR THE DIFFUSION AND ENERGY
INSTABILITIES FOR NON-GRAVITATING SMOOTH SPHERES 168 8.2.6 ENERGY AND
DIFFUSION INSTABILITIES IN A MODEL OF GRAVITATING PARTICLES 169 8.3
ANALYSIS OF THE AXISYMMETRIC OSCILLATIONS OF A DISC WITH NON-DIFFUSION
FLUXES; ACCRETION INSTABILITY - THE CAUSE OF THE LARGE-SCALE STRUCTURE
OF THE RINGS 178 8.4 ANALYSIS OF NON-AXISYMMETRIC OSCILLATIONS OF A DISC
- ELLIPSE INSTABILITY 184 9. RESONANCE EFFECTS IN PLANETARY RINGS. I
SPIRAL WAVES . . . 189 9.1 DENSITY WAVES 189 9.1.1 FREQUENCY
MULTIPLICATION IN AN ASPHERICAL FIELD .... 190 9.1.2 RESONANCE
INTERACTION OF A SATELLITE *; WITH RING PARTICLES (TWO-DIMENSIONAL CASE)
192 9.1.3 SPIRAL WAVES TAKING INTO ACCOUNT THE SELF-GRAVITATION AND
PRESSURE OF THE DISC (TWO-DIMENSIONAL CASE) 194 9.2 BENDING WAVES 196
10. RESONANCE EFFECTS IN PLANETARY RINGS. II NARROW RINGLETS AND
SATELLITES 199 10.1 HYPOTHESES ABOUT THE ORIGIN OF THE URANIAN RINGS 199
10.1.1 THE REMARKABLE PROPERTIES OF THE URANIAN RINGS . . . 199 10.1.2
HYPOTHESES ABOUT THE CONNECTION BETWEEN THE RINGS AND THE FIVE KNOWN
URANIAN SATELLITES . .. 200 XVIII CONTENTS 10.1.3 HYPOTHESES ABOUT
UNKNOWN SATELLITES IN THE RINGS AND SHEPHERD SATELLITES 201 10.1.4
HYPOTHESIS ABOUT THE RESONANCE NATURE OF THE URANIAN RINGS AND THE
EXISTENCE OF A SERIES OF UNDISCOVERED SATELLITES BEYOND THE BOUNDARY OF
THE RINGS 201 10.1.5 CALCULATION OF THE ORBITAL RADII OF HYPOTHETICAL
SATELLITES 202 10.1.6 DETECTION OF NEW URANIAN SATELLITES , 205 10.2
CORRELATION BETWEEN THE URANIAN RINGS AND SATELLITE RESONANCES 205
10.2.1 DISTRIBUTION OF THE DISTANCES BETWEEN THE RINGS AND THE
RESONANCES 205 10.2.2 CORRELATION BETWEEN THE POSITIONS OF THE RINGS AND
RESONANCES 207 10.2.3 A STUDY OF THE RESONANCE SYSTEM OF URANIAN RINGS
USING THE CORRELATION COEFFICIENT 209 11. FORMATION AND STABILITY OF THE
URANIAN RINGS 213 11.1 SEQUENCE OF THE FORMATION OF THE URANIAN
SATELLITES 216 11.2 PARTICLE DRIFT IN THE URANIAN PROTO-DISC 219 11.2.1
AERODYNAMIC DRIFT IN AN EXPANDING PROTO-DISC 219 11.2.2 QUALITATIVE
DISCUSSION OF THE BALLISTIC DRIFT 222 11.2.3 ESTIMATES OF THE BALLISTIC
DRIFT AND OF THE AERODYNAMIC FRICTION 226 11.2.4 NUMERICAL CALCULATION
OF THE BALLISTIC DRIFT IN THE PRESENT SYSTEM OF RINGS 230 11.3 FORMATION
OF THE URANIAN RINGS IN THE INNER LINDBLAD RESONANCES 233 11.3.1
ELEMENTARY CAPTURE DYNAMICS 234 11.3.2 NUMERICAL CALCULATION OF PARTICLE
CAPTURE IN INNER LINDBLAD RESONANCES 238 11.4 THE PRESENT-DAY URANIAN
RING SYSTEM . 243 11.4.1 EPOCH OF FREE DRIFT OF THE RINGS AND ITS FINALE
WITH THE PARTICIPATION OF CORDELIA AND OPHELIA 243 11.4.2 CONTEMPORARY
PICTURE OF THE DRIFT EQUILIBRIUM IN THE RINGS AND THE FORMATION OF THE
1986U1R OR A RING 245 11.4.3 DUST STRUCTURES IN THE RINGS 247 11.4.4 ON
THE STABILITY OF THE SHARP EDGE OF NON-RESONANCE ELLIPTICAL RINGS 249
11.4.5 BIOGRAPHICAL INFORMATION ABOUT THE URANIAN RINGS . 250 11.5
CONCLUSIONS 251 CONTENTS XIX 12. ORIGIN, DYNAMICS, AND STABILITY OF THE
NEPTUNIAN RINGS 253 12.1 HYPOTHESES ABOUT THE DYNAMICS OF THE INCOMPLETE
NEPTUNIAN RINGS (ARCS) 253 12.1.1 DYNAMICAL MODELS OF THE NEPTUNIAN ARCS
IN THE FRAMEWORK OF THE SHEPHERD CONCEPT 253 12.1.2 MODEL OF
INTRINSICALLY STABLE NEPTUNIAN ARCS ON A CONTINUOUS RING 255 12.1.3 THE
VOYAGER-2 FLY-PAST NEAR NEPTUNE IN AUGUST 1989 256 12.1.4 CONNECTION
BETWEEN SATELLITE RESONANCES AND THE NEPTUNIAN RINGS 258 12.2 STABILITY
OF A SEPARATE EPITON 259 12.2.1 PARTICLE MOTION IN AN EPITON 259 12.2.2
STABILITY OF AN EPITON OF INELASTIC PARTICLES 262 12.2.3 EVOLUTION OF AN
EPITON IN RESONANCE WITH A SATELLITE 265 12.3 FORMATION OF ARCS ON A
CONTINUOUS RING 274 12.3.1 BREAK-UP OF A RING UNDER THE ACTION OF A
SATELLITE RESONANCE 274 12.3.2 INTERACTION BETWEEN AN EPITON AND A RING
276 12.3.3 FORMATION OF A STABLE CHAIN OF EPITONS (ARCS) 279 12.3.4
GENERAL SCENARIO FOR THE ORIGIN OF THE SYSTEM OF NEPTUNIAN ARCS 282 13.
SELF-ORGANISATION OF THE SOLAR SYSTEM 285 13.1 CONDITIONS FOR THE
DEVELOPMENT OF SPATIAL STRUCTURES 285 13.1.1 SELF-ORGANISATION OF OPEN
SYSTEMS 286 13.1.2 GRAVITATIONAL SELF-ORGANISATION 287 13.2 THE LAW OF
THE PLANETARY DISTANCES 287 13.2.1 TENDENCY OF THE SOLAR SYSTEM TOWARDS
SELF-ORGANISATION . . . . 287 13.2.2 DISSIPATIVE INSTABILITY AND THE
LAW OF THE PLANETARY DISTANCES 290 13.2.3 PROPOSED CHARACTERISTICS OF
THE PROTO-DISC 292 14. SPACE STUDIES OF THE OUTER PLANETS 297 14.1 SPACE
SUCCESSES IN THE PERIOD 1959-1989 297 14.2 THE VOYAGER MISSIONS 301 14.3
THE CASSINI MISSION 303 14.4 THE CHRONOS MISSION 305 14.5 THE
INFRASTRUCTURE OF PLANETARY PHYSICS 308 CONCLUSION 313 XX CONTENTS
APPENDICES I. THE POSSIBILITY OF STUDYING THE DYNAMICS OF ASTROPHYSICAL
DISCS IN A TWO-DIMENSIONAL APPROACH . 315 1. INTRODUCTION 315 2.
ORIGINAL EQUATIONS FOR THE VOLUME FUNCTIONS 316 2.1 INITIAL DYNAMIC
EQUATIONS 316 2.2 EQUATION OF STATE 317 3. DERIVATION OF THE BASIC
EQUATIONS FOR THE PLANE FUNCTIONS 318 3.1 ORDER-OF-MAGNITUDE ESTIMATES
OF THE TERMS IN THE INITIAL EQUATIONS 318 3.2 THE TWO LIMITING CASES OF
ASTROPHYSICAL DISCS .... 321 3.3 LIMITATIONS OF THE CHARACTERISTIC TIMES
OF PROCESSES STUDIED IN THE TWO-DIMENSIONAL APPROXIMATION .... 326 3.4
CLOSED SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS FOR A BAROTROPIC DISC
328 4. CLOSED SET OF DIFFERENTIAL EQUATIONS FOR A POLYTROPIC DISC IN AN
EXTERNAL GRAVITATIONAL FIELD 330 4.1 DERIVATION OF THE TWO-DIMENSIONAL
EQUATIONS 330 4.2 SPECIAL CASE OF THE POTENTIAL 0 = $O{R), $ O = 0 ...
333 4.3 THE APPLICABILITY OF C = CONSTANT 334 5. CLOSED SET OF
DIFFERENTIAL EQUATIONS FOR A POLYTROPIC SELF-GRAVITATING DISC 335 5.1
DERIVATION OF THE TWO-DIMENSIONAL EQUATIONS 335 5.2 WHY DOES THE
GRADIENT OF THE PLANE PRESSURE NOT HAVE THE PHYSICAL MEANING OF A FORCE?
338 6. CONCLUSION 339 II. SMALL-AMPLITUDE WAVES IN A DISC WHICH ARE
SYMMETRIC WITH RESPECT TO ITS Z * O-PLANE . 341 1 1. DERIVATION OF A
CLOSED SET OF INTEGRO-DIFFERENTIAL EQUATIONS . 341 2. DERIVATION OF THE
DISPERSION EQUATION DESCRIBING THE THREE-DIMENSIONAL PERTURBATIONS 345
3. SOLUTION OF THE POISSON EQUATION FOR A DISC OF HALF-THICKNESS H 347
4. DISPERSION RELATION FOR WAVES IN THE PLANE OF THE DISC .... 350 5.
THE ROLE OF PERTURBATIONS ALONG THE ROTATION AXIS 351 5.1 CONDITION FOR
NEGLECTING MASS TRANSFER ALONG THE ROTATION AXIS 352 5.1.1 GENERAL CASE
352 5.1.2 ISOTHERMAL DISC 354 N CONTENTS XXI 5.2 CONDITION FOR
NEGLECTING THE INERTIAL TERM IN THE EQUATION OF MOTION IN THE
^-DIRECTION - CONDITION FOR NEGLECTING OSCILLATIONS ALONG THE ROTATION
AXIS . 355 6. CONCLUSION 357 III. DERIVATION OF THE LINEARISED EQUATIONS
FOR OSCILLATIONS OF A VISCOUS DISC 359 1. DERIVATION OF THE LINEARISED
EQUATIONS FOR OSCILLATIONS OF A VISCOUS UNIFORMLY ROTATING DISC 359 2.
DERIVATION OF THE LINEARISED EQUATIONS FOR OSCILLATIONS OF A VISCOUS
DIFFERENTIALLY ROTATING DISC OF INELASTIC PARTICLES WITH ACCOUNT OF
EXTERNAL MATTER FLUXES 361 3. DERIVATION OF THE GENERAL DISPERSION
EQUATION 369 IV. EVALUATING THE GRAVITATIONAL POTENTIAL INSIDE AND
OUTSIDE A TRIAXIAL ELLIPSOID 371 1. POTENTIAL INSIDE THE ELLIPSOID 371
2. POTENTIAL OUTSIDE THE ELLIPSOID 375 V. A DRIFT MECHANISM FOR THE
FORMATION OF THE CASSINI DIVISION 379 1. INTRODUCTION 379 2. STATEMENT
OF THE PROBLEM 385 3. DERIVATION OF THE NON-LINEAR MOMENTUM CONSERVATION
EQUATIONS 388 4. TIME-AVERAGED NON-LINEAR MOMENTUM CONSERVATION
EQUATIONS 390 5. ABSENCE OF AVERAGED RADIAL MASS FLUX IN A
DISSIPATIONLESS DISC. LARGE-SCALE CONVECTION 392 6. RADIAL MASS TRANSFER
IN A VISCOUS DISC , 395 7. EVOLUTION OF THE SURFACE DENSITY OF A DISC
400 8. CONDITIONS FOR THE FORMATION OF DIFFERENT TYPES OF RESONANT
STRUCTURES: GAPS OR WAVETRAINS? . . 401 9. ESTIMATE OF THE MAXIMUM WIDTH
OF A GAP PRODUCED BY A DENSITY WAVE 405 10. SOME ADDITIONAL REMARKS 406
VI. RESONANCE STRUCTURES IN SATURN S C RING 409 REFERENCES 419 INDEX 429
|
any_adam_object | 1 |
author | Fridman, Aleksej Maksimovič 1940-2010 Gor'kavji, Nikolaj N. 1959- |
author_GND | (DE-588)1032927208 (DE-588)120807955 |
author_facet | Fridman, Aleksej Maksimovič 1940-2010 Gor'kavji, Nikolaj N. 1959- |
author_role | aut aut |
author_sort | Fridman, Aleksej Maksimovič 1940-2010 |
author_variant | a m f am amf n n g nn nng |
building | Verbundindex |
bvnumber | BV012457828 |
classification_rvk | US 8000 |
ctrlnum | (OCoLC)632945610 (DE-599)BVBBV012457828 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01667nam a2200409 c 4500</leader><controlfield tag="001">BV012457828</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20000209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990309s1999 gw ad|| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">955710413</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">354064864X</subfield><subfield code="c">Pp. : DM 139.00</subfield><subfield code="9">3-540-64864-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)632945610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012457828</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 8000</subfield><subfield code="0">(DE-625)146732:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fridman, Aleksej Maksimovič</subfield><subfield code="d">1940-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1032927208</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Fizika planetnych kolets</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of planetary rings</subfield><subfield code="b">celestial mechanics of continuous media</subfield><subfield code="c">A. M. Fridman ; N. N. Gorkavyi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 436 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Astronomy and astrophysics library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 419 - 427</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Himmelsmechanik</subfield><subfield code="0">(DE-588)4127484-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Planetarer Ring</subfield><subfield code="0">(DE-588)4385093-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Planetarer Ring</subfield><subfield code="0">(DE-588)4385093-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Himmelsmechanik</subfield><subfield code="0">(DE-588)4127484-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gor'kavji, Nikolaj N.</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120807955</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008453963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008453963</subfield></datafield></record></collection> |
id | DE-604.BV012457828 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:27:55Z |
institution | BVB |
isbn | 354064864X |
language | German English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-008453963 |
oclc_num | 632945610 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-11 |
physical | XXI, 436 S. Ill., graph. Darst. |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer |
record_format | marc |
series2 | Astronomy and astrophysics library |
spelling | Fridman, Aleksej Maksimovič 1940-2010 Verfasser (DE-588)1032927208 aut Fizika planetnych kolets Physics of planetary rings celestial mechanics of continuous media A. M. Fridman ; N. N. Gorkavyi Berlin [u.a.] Springer 1999 XXI, 436 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Astronomy and astrophysics library Literaturverz. S. 419 - 427 Himmelsmechanik (DE-588)4127484-2 gnd rswk-swf Planetarer Ring (DE-588)4385093-5 gnd rswk-swf Planetarer Ring (DE-588)4385093-5 s Himmelsmechanik (DE-588)4127484-2 s DE-604 Gor'kavji, Nikolaj N. 1959- Verfasser (DE-588)120807955 aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008453963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fridman, Aleksej Maksimovič 1940-2010 Gor'kavji, Nikolaj N. 1959- Physics of planetary rings celestial mechanics of continuous media Himmelsmechanik (DE-588)4127484-2 gnd Planetarer Ring (DE-588)4385093-5 gnd |
subject_GND | (DE-588)4127484-2 (DE-588)4385093-5 |
title | Physics of planetary rings celestial mechanics of continuous media |
title_alt | Fizika planetnych kolets |
title_auth | Physics of planetary rings celestial mechanics of continuous media |
title_exact_search | Physics of planetary rings celestial mechanics of continuous media |
title_full | Physics of planetary rings celestial mechanics of continuous media A. M. Fridman ; N. N. Gorkavyi |
title_fullStr | Physics of planetary rings celestial mechanics of continuous media A. M. Fridman ; N. N. Gorkavyi |
title_full_unstemmed | Physics of planetary rings celestial mechanics of continuous media A. M. Fridman ; N. N. Gorkavyi |
title_short | Physics of planetary rings |
title_sort | physics of planetary rings celestial mechanics of continuous media |
title_sub | celestial mechanics of continuous media |
topic | Himmelsmechanik (DE-588)4127484-2 gnd Planetarer Ring (DE-588)4385093-5 gnd |
topic_facet | Himmelsmechanik Planetarer Ring |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008453963&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fridmanaleksejmaksimovic fizikaplanetnychkolets AT gorkavjinikolajn fizikaplanetnychkolets AT fridmanaleksejmaksimovic physicsofplanetaryringscelestialmechanicsofcontinuousmedia AT gorkavjinikolajn physicsofplanetaryringscelestialmechanicsofcontinuousmedia |