The dynamical Mordell-Lang conjecture:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2016]
|
Schriftenreihe: | Mathematical surveys and monographs
volume 210 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiii, 280 Seiten |
ISBN: | 9781470424084 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV043731430 | ||
003 | DE-604 | ||
005 | 20220630 | ||
007 | t | ||
008 | 160824s2016 |||| 00||| eng d | ||
010 | |a 2015036689 | ||
020 | |a 9781470424084 |c hardcover |9 978-1-4704-2408-4 | ||
035 | |a (OCoLC)950868756 | ||
035 | |a (DE-599)GBV83584076X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-11 | ||
050 | 0 | |a QA565 | |
082 | 0 | |a 516.3/52 | |
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 31.14 |2 bkl | ||
100 | 1 | |a Bell, Jason P. |d 1974- |e Verfasser |0 (DE-588)1106401247 |4 aut | |
245 | 1 | 0 | |a The dynamical Mordell-Lang conjecture |c Jason P. Bell, Dragos Ghioca, Thomas J. Tucker |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a xiii, 280 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical surveys and monographs |v volume 210 | |
650 | 4 | |a Mordell conjecture | |
650 | 4 | |a Curves, Algebraic | |
650 | 4 | |a Arithmetical algebraic geometry | |
650 | 4 | |a Geometry, Algebraic | |
700 | 1 | |a Ghioca, Dragos |e Verfasser |0 (DE-588)1106402065 |4 aut | |
700 | 1 | |a Tucker, Thomas J. |e Verfasser |0 (DE-588)1106402251 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-2908-9 |
830 | 0 | |a Mathematical surveys and monographs |v volume 210 |w (DE-604)BV000018014 |9 210 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029143288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029143288 |
Datensatz im Suchindex
_version_ | 1804176530850447360 |
---|---|
adam_text | Mathematical
Surveys
and
Monographs
Volume 210
The Dynamical
Mordell-Lang
Conjecture
Jason P Bell
Dragos Ghioca
Thomas J Tucker
American Mathematical Society
Providence, Rhode Island
Contents
Preface xi
Notation xii
Chapter 1 Introduction 1
1 1 Overview of the problem 1
1 2 Linear recurrence sequences 2
1 3 Polynomial-exponential Diophantine equations 3
1 4 Linear algebra 4
1 5 Arithmetic geometry 5
1 6 Plan of the book 7
Chapter 2 Background material 11
2 1 Algebraic geometry 11
2 2 Dynamics of endomorphisms 22
2 3 Valuations 24
2 4 Chebotarev Density Theorem 32
2 5 The Skolem-Mahler-Lech Theorem 33
2 6 Heights 40
Chapter 3 The Dynamical Mordell-Lang problem 47
3 1 The Dynamical Mordell-Lang Conjecture 47
3 2 The case of rational self-maps 52
3 3 Known cases of the Dynamical Mordell-Lang Conjecture 54
3 4 The Mordell-Lang conjecture 57
3 5 Denis-Mordell-Lang conjecture 61
36A more general Dynamical Mordell-Lang problem 62
Chapter 4 A geometric Skolem-Mahler-Lech Theorem 67
4 1 Geometric reformulation 67
4 2 Automorphisms of affine varieties 68
4 3 Etale maps 70
4 4 Proof of the Dynamical Mordell-Lang Conjecture for etale maps 73
Chapter 5 Linear relations between points in polynomial orbits 85
5 1 The main results 85
5 2 Intersections of polynomial orbits 89
53A special case 91
5 4 Proof of Theorem 5302 93
5 5 The general case of Theorem 5301 98
5 6 The method of specialization and the proof of Theorem 5502 98
vii
CONTENTS
viii
5 7 The case of Theorem 5201 when the polynomials have different
degrees 102
5 8 An alternative proof for the function field case 107
5 9 Possible extensions 110
5 10 The case of plane curves 110
5 11 A Dynamical Mordell-Lang type question for polarizable
endomor phisms 113
Chapter 6 Parametrization of orbits 117
6 1 Rational maps 118
6 2 Analytic uniformization 120
6 3 Higher dimensional parametrizations 124
Chapter 7 The split case in the Dynamical Mordell-Lang Conjecture 127
7 1 The case of rational maps without periodic critical points 129
7 2 Extension to polynomials with complex coefficients 132
7 3 The case of “almost” post-critically finite rational maps 136
Chapter 8 Heuristics for avoiding ramification 143
81A random model heuristic 143
8 2 Random models and cycle lengths 146
8 3 Random models and avoiding ramification 148
8 4 The case of split maps 150
Chapter 9 Higher dimensional results 153
9 1 The Herman-Yoccoz method for periodic attracting points 153
9 2 The Herman-Yoccoz method for periodic indifferent points 158
9 3 The case of semiabelian varieties 159
9 4 Preliminaries from linear algebra 160
9 5 Proofs for Theorems 9201 and 9301 162
Chapter 10 Additional results towards the Dynamical Mordell-Lang
Conjecture 167
10 1 A v-adic analytic instance of the Dynamical Mordell-Lang Conjecture 167
10 2 A real analytic instance of the Dynamical Mordell-Lang Conjecture 171
10 3 Birational polynomial self-maps on the affine plane 175
Chapter 11 Sparse sets in the Dynamical Mordell-Lang Conjecture 179
11 1 Overview of the results presented in this chapter 179
11 2 Sets of positive Banach density 182
11 3 General quantitative results 185
11 4 The Dynamical Mordell-Lang problem for Noetherian spaces 189
11 5 Very sparse sets in the Dynamical Mordell-Lang problem for
endomorphisms of (P1)^ 193
11 6 Reductions in the proof of Theorem 11 502 198
11 7 Construction of a suitable p-adic analytic function 199
11 8 Conclusion of the proof of Theorem 11 502 202
11 9 Curves 205
11 10 An analytic counterexample to a p-adic formulation of the
Dynamical Mordell-Lang Conjecture 207
CONTENTS
ix
11 11 Approximating an orbit by a p-adic analytic function 209
Chapter 12 Denis-Mordell-Lang Conjecture 217
12 1 Denis-Mordell-Lang Conjecture 217
12 2 Preliminaries on function field arithmetic 222
12 3 Proof of our main result 224
Chapter 13 Dynamical Mordell-Lang Conjecture in positive characteristic 231
13 1 The Mordell-Lang Conjecture over fields of positive characteristic 232
13 2 Dynamical Mordell-Lang Conjecture over fields of positive
characteristic 233
13 3 Dynamical Mordell-Lang Conjecture for tori in positive characteristic 234
13 4 The Skolem-Mahler-Lech Theorem in positive characteristic 237
Chapter 14 Related problems in arithmetic dynamics 249
14 1 Dynamical Manin-Mumford Conjecture 249
14 2 Unlikely intersections in dynamics 252
14 3 Zhang’s conjecture for Zariski dense orbits 254
14 4 Uniform boundedness 257
14 5 Integral points in orbits 258
14 6 Orbits avoiding points modulo primes 259
14 7 A Dynamical Mordell-Lang conjecture for value sets 261
Chapter 15 Future directions 263
15 1 What is known? 263
15 2 What is next? 263
15 3 Varieties with many rational points 264
15 4 A higher dimensional Dynamical Mordell-Lang Conjecture 264
Bibliography 267
|
any_adam_object | 1 |
author | Bell, Jason P. 1974- Ghioca, Dragos Tucker, Thomas J. |
author_GND | (DE-588)1106401247 (DE-588)1106402065 (DE-588)1106402251 |
author_facet | Bell, Jason P. 1974- Ghioca, Dragos Tucker, Thomas J. |
author_role | aut aut aut |
author_sort | Bell, Jason P. 1974- |
author_variant | j p b jp jpb d g dg t j t tj tjt |
building | Verbundindex |
bvnumber | BV043731430 |
callnumber-first | Q - Science |
callnumber-label | QA565 |
callnumber-raw | QA565 |
callnumber-search | QA565 |
callnumber-sort | QA 3565 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 810 SK 240 |
ctrlnum | (OCoLC)950868756 (DE-599)GBV83584076X |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01790nam a2200457 cb4500</leader><controlfield tag="001">BV043731430</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220630 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">160824s2016 |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2015036689</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470424084</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-1-4704-2408-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)950868756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV83584076X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA565</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.14</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bell, Jason P.</subfield><subfield code="d">1974-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1106401247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The dynamical Mordell-Lang conjecture</subfield><subfield code="c">Jason P. Bell, Dragos Ghioca, Thomas J. Tucker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 280 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">volume 210</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mordell conjecture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetical algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghioca, Dragos</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1106402065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tucker, Thomas J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1106402251</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-2908-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical surveys and monographs</subfield><subfield code="v">volume 210</subfield><subfield code="w">(DE-604)BV000018014</subfield><subfield code="9">210</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029143288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029143288</subfield></datafield></record></collection> |
id | DE-604.BV043731430 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:33:39Z |
institution | BVB |
isbn | 9781470424084 |
language | English |
lccn | 2015036689 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029143288 |
oclc_num | 950868756 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | xiii, 280 Seiten |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | American Mathematical Society |
record_format | marc |
series | Mathematical surveys and monographs |
series2 | Mathematical surveys and monographs |
spelling | Bell, Jason P. 1974- Verfasser (DE-588)1106401247 aut The dynamical Mordell-Lang conjecture Jason P. Bell, Dragos Ghioca, Thomas J. Tucker Providence, Rhode Island American Mathematical Society [2016] © 2016 xiii, 280 Seiten txt rdacontent n rdamedia nc rdacarrier Mathematical surveys and monographs volume 210 Mordell conjecture Curves, Algebraic Arithmetical algebraic geometry Geometry, Algebraic Ghioca, Dragos Verfasser (DE-588)1106402065 aut Tucker, Thomas J. Verfasser (DE-588)1106402251 aut Erscheint auch als Online-Ausgabe 978-1-4704-2908-9 Mathematical surveys and monographs volume 210 (DE-604)BV000018014 210 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029143288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bell, Jason P. 1974- Ghioca, Dragos Tucker, Thomas J. The dynamical Mordell-Lang conjecture Mathematical surveys and monographs Mordell conjecture Curves, Algebraic Arithmetical algebraic geometry Geometry, Algebraic |
title | The dynamical Mordell-Lang conjecture |
title_auth | The dynamical Mordell-Lang conjecture |
title_exact_search | The dynamical Mordell-Lang conjecture |
title_full | The dynamical Mordell-Lang conjecture Jason P. Bell, Dragos Ghioca, Thomas J. Tucker |
title_fullStr | The dynamical Mordell-Lang conjecture Jason P. Bell, Dragos Ghioca, Thomas J. Tucker |
title_full_unstemmed | The dynamical Mordell-Lang conjecture Jason P. Bell, Dragos Ghioca, Thomas J. Tucker |
title_short | The dynamical Mordell-Lang conjecture |
title_sort | the dynamical mordell lang conjecture |
topic | Mordell conjecture Curves, Algebraic Arithmetical algebraic geometry Geometry, Algebraic |
topic_facet | Mordell conjecture Curves, Algebraic Arithmetical algebraic geometry Geometry, Algebraic |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029143288&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000018014 |
work_keys_str_mv | AT belljasonp thedynamicalmordelllangconjecture AT ghiocadragos thedynamicalmordelllangconjecture AT tuckerthomasj thedynamicalmordelllangconjecture |