From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning:
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Erlangen ; Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg
2021
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | 1 Online-Ressource |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048360267 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220714s2021 gw |||| o||u| ||||||eng d | ||
015 | |a 21,O06 |2 dnb | ||
016 | 7 | |a 1233010824 |2 DE-101 | |
024 | 7 | |a urn:nbn:de:bvb:29-opus4-163651 |2 urn | |
035 | |a (OCoLC)1337141966 | ||
035 | |a (DE-599)DNB1233010824 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 2\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-29 | ||
084 | |8 1\p |a 796 |2 23sdnb | ||
100 | 1 | |a Stoeve, Maike |e Verfasser |4 aut | |
245 | 1 | 0 | |a From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |c Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, Bjoern M. Eskofier |
264 | 1 | |a Erlangen ; Nürnberg |b Friedrich-Alexander-Universität Erlangen-Nürnberg |c 2021 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
653 | |a data analysis | ||
653 | |a activity recognition | ||
653 | |a sensor-signal-based machine learning | ||
653 | |a deep learning | ||
653 | |a wearable sensors | ||
653 | |a sport | ||
700 | 1 | |a Schuldhaus, Dominik |e Verfasser |4 aut | |
700 | 1 | |a Gamp, Axel |e Verfasser |4 aut | |
700 | 1 | |a Zwick, Constantin |e Verfasser |4 aut | |
700 | 1 | |a Eskofier, Bjoern M. |e Verfasser |4 aut | |
787 | 0 | 8 | |i Sonderdruck aus |t Sensors |g Vol. 21 (2021) |o 10.3390/s21093071 |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-163651 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1233010824/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
856 | 4 | 0 | |q application/pdf |u https://open.fau.de/handle/openfau/16365 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033739477 | ||
883 | 0 | |8 1\p |a aepsg |c 0,99933 |d 20210508 |q DE-101 |u https://d-nb.info/provenance/plan#aepsg | |
883 | 1 | |8 2\p |a npi |d 20210507 |q DE-101 |u https://d-nb.info/provenance/plan#npi |
Datensatz im Suchindex
_version_ | 1804184223577276416 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Stoeve, Maike Schuldhaus, Dominik Gamp, Axel Zwick, Constantin Eskofier, Bjoern M. |
author_facet | Stoeve, Maike Schuldhaus, Dominik Gamp, Axel Zwick, Constantin Eskofier, Bjoern M. |
author_role | aut aut aut aut aut |
author_sort | Stoeve, Maike |
author_variant | m s ms d s ds a g ag c z cz b m e bm bme |
building | Verbundindex |
bvnumber | BV048360267 |
collection | ebook |
ctrlnum | (OCoLC)1337141966 (DE-599)DNB1233010824 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02141nmm a2200517zc 4500</leader><controlfield tag="001">BV048360267</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220714s2021 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,O06</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1233010824</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:29-opus4-163651</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1337141966</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1233010824</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">796</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoeve, Maike</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning</subfield><subfield code="c">Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, Bjoern M. Eskofier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="b">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">data analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">activity recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sensor-signal-based machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wearable sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sport</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuldhaus, Dominik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gamp, Axel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zwick, Constantin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eskofier, Bjoern M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="787" ind1="0" ind2="8"><subfield code="i">Sonderdruck aus</subfield><subfield code="t">Sensors</subfield><subfield code="g">Vol. 21 (2021)</subfield><subfield code="o">10.3390/s21093071</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-163651</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1233010824/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="q">application/pdf</subfield><subfield code="u">https://open.fau.de/handle/openfau/16365</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033739477</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">aepsg</subfield><subfield code="c">0,99933</subfield><subfield code="d">20210508</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepsg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">npi</subfield><subfield code="d">20210507</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield></record></collection> |
id | DE-604.BV048360267 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:14:22Z |
indexdate | 2024-07-10T09:35:56Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033739477 |
oclc_num | 1337141966 |
open_access_boolean | 1 |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource |
psigel | ebook |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Friedrich-Alexander-Universität Erlangen-Nürnberg |
record_format | marc |
spelling | Stoeve, Maike Verfasser aut From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, Bjoern M. Eskofier Erlangen ; Nürnberg Friedrich-Alexander-Universität Erlangen-Nürnberg 2021 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager data analysis activity recognition sensor-signal-based machine learning deep learning wearable sensors sport Schuldhaus, Dominik Verfasser aut Gamp, Axel Verfasser aut Zwick, Constantin Verfasser aut Eskofier, Bjoern M. Verfasser aut Sonderdruck aus Sensors Vol. 21 (2021) 10.3390/s21093071 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-163651 Resolving-System kostenfrei Volltext https://d-nb.info/1233010824/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext application/pdf https://open.fau.de/handle/openfau/16365 Verlag kostenfrei Volltext 1\p aepsg 0,99933 20210508 DE-101 https://d-nb.info/provenance/plan#aepsg 2\p npi 20210507 DE-101 https://d-nb.info/provenance/plan#npi |
spellingShingle | Stoeve, Maike Schuldhaus, Dominik Gamp, Axel Zwick, Constantin Eskofier, Bjoern M. From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |
title | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |
title_auth | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |
title_exact_search | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |
title_exact_search_txtP | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |
title_full | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, Bjoern M. Eskofier |
title_fullStr | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, Bjoern M. Eskofier |
title_full_unstemmed | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning Maike Stoeve, Dominik Schuldhaus, Axel Gamp, Constantin Zwick, Bjoern M. Eskofier |
title_short | From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning |
title_sort | from the laboratory to the field imu based shot and pass detection in football training and game scenarios using deep learning |
url | https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-163651 https://d-nb.info/1233010824/34 https://open.fau.de/handle/openfau/16365 |
work_keys_str_mv | AT stoevemaike fromthelaboratorytothefieldimubasedshotandpassdetectioninfootballtrainingandgamescenariosusingdeeplearning AT schuldhausdominik fromthelaboratorytothefieldimubasedshotandpassdetectioninfootballtrainingandgamescenariosusingdeeplearning AT gampaxel fromthelaboratorytothefieldimubasedshotandpassdetectioninfootballtrainingandgamescenariosusingdeeplearning AT zwickconstantin fromthelaboratorytothefieldimubasedshotandpassdetectioninfootballtrainingandgamescenariosusingdeeplearning AT eskofierbjoernm fromthelaboratorytothefieldimubasedshotandpassdetectioninfootballtrainingandgamescenariosusingdeeplearning |