Learning in the presence of inaccurate information:

Abstract: "In this paper we discuss the effects of errors in input data on recursion theoretic learning. We consider three types of inaccuracy in input data depending on the presence of extra data (noise), missing data (incompleteness) or both (imperfection). We show that for function learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fulk, Mark A. (VerfasserIn), Jain, Sanjay (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Rochester, NY 1989
Schriftenreihe:University of Rochester <Rochester, NY> / Department of Computer Science: Technical report 279
Schlagworte:
Zusammenfassung:Abstract: "In this paper we discuss the effects of errors in input data on recursion theoretic learning. We consider three types of inaccuracy in input data depending on the presence of extra data (noise), missing data (incompleteness) or both (imperfection). We show that for function learning incompleteness harms strictly more than noise. However, for language learning, identification on incomplete text and identification on noisy text are incomparable. We also prove hierarchies based on the number of inaccuracies present in the input."
Beschreibung:14 S.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!