Topics in the constructive theory of countable Markov chains:
Markov chains are an important idea, related to random walks, which crops up widely in applied stochastic analysis. They are used, for example, in performance modelling and evaluation of computer networks, queuing networks, and telecommunication systems. The main point of the present book is to prov...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
1995
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Markov chains are an important idea, related to random walks, which crops up widely in applied stochastic analysis. They are used, for example, in performance modelling and evaluation of computer networks, queuing networks, and telecommunication systems. The main point of the present book is to provide methods, based on the construction of Lyapunov functions, of determining when a Markov chain is ergodic, null recurrent, or transient. These methods can also be extended to the study of questions of stability. Of particular concern are reflected random walks and reflected Brownian motion. The authors provide not only a self-contained introduction to the theory but also details of how the required Lyapunov functions are constructed in various situations |
Beschreibung: | 1 online resource (169 pages) |
ISBN: | 9780511984020 |
DOI: | 10.1017/CBO9780511984020 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043943727 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s1995 |||| o||u| ||||||eng d | ||
020 | |a 9780511984020 |c Online |9 978-0-511-98402-0 | ||
024 | 7 | |a 10.1017/CBO9780511984020 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511984020 | ||
035 | |a (OCoLC)992821231 | ||
035 | |a (DE-599)BVBBV043943727 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 519.2/33 |2 23 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
100 | 1 | |a Fayolle, G. |d 1943- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topics in the constructive theory of countable Markov chains |c G. Fayolle, V.A. Malyshev, M.V. Menshikov |
264 | 1 | |a Cambridge |b Cambridge University Press |c 1995 | |
300 | |a 1 online resource (169 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a Markov chains are an important idea, related to random walks, which crops up widely in applied stochastic analysis. They are used, for example, in performance modelling and evaluation of computer networks, queuing networks, and telecommunication systems. The main point of the present book is to provide methods, based on the construction of Lyapunov functions, of determining when a Markov chain is ergodic, null recurrent, or transient. These methods can also be extended to the study of questions of stability. Of particular concern are reflected random walks and reflected Brownian motion. The authors provide not only a self-contained introduction to the theory but also details of how the required Lyapunov functions are constructed in various situations | ||
650 | 4 | |a Markov processes | |
650 | 0 | 7 | |a Ljapunov-Funktion |0 (DE-588)4274502-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Kette |0 (DE-588)4037612-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endliche Markov-Kette |0 (DE-588)4152154-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Kette |0 (DE-588)4037612-6 |D s |
689 | 0 | 1 | |a Ljapunov-Funktion |0 (DE-588)4274502-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Endliche Markov-Kette |0 (DE-588)4152154-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Malyshev, V. A. |e Sonstige |4 oth | |
700 | 1 | |a Menʹshikov, M. V. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-46197-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511984020 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029352698 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9780511984020 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511984020 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176887867506688 |
---|---|
any_adam_object | |
author | Fayolle, G. 1943- |
author_facet | Fayolle, G. 1943- |
author_role | aut |
author_sort | Fayolle, G. 1943- |
author_variant | g f gf |
building | Verbundindex |
bvnumber | BV043943727 |
classification_rvk | SK 820 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511984020 (OCoLC)992821231 (DE-599)BVBBV043943727 |
dewey-full | 519.2/33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/33 |
dewey-search | 519.2/33 |
dewey-sort | 3519.2 233 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511984020 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02894nmm a2200529zc 4500</leader><controlfield tag="001">BV043943727</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511984020</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-98402-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511984020</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511984020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992821231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043943727</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2/33</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fayolle, G.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topics in the constructive theory of countable Markov chains</subfield><subfield code="c">G. Fayolle, V.A. Malyshev, M.V. Menshikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (169 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Markov chains are an important idea, related to random walks, which crops up widely in applied stochastic analysis. They are used, for example, in performance modelling and evaluation of computer networks, queuing networks, and telecommunication systems. The main point of the present book is to provide methods, based on the construction of Lyapunov functions, of determining when a Markov chain is ergodic, null recurrent, or transient. These methods can also be extended to the study of questions of stability. Of particular concern are reflected random walks and reflected Brownian motion. The authors provide not only a self-contained introduction to the theory but also details of how the required Lyapunov functions are constructed in various situations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Funktion</subfield><subfield code="0">(DE-588)4274502-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Markov-Kette</subfield><subfield code="0">(DE-588)4152154-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Kette</subfield><subfield code="0">(DE-588)4037612-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ljapunov-Funktion</subfield><subfield code="0">(DE-588)4274502-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Endliche Markov-Kette</subfield><subfield code="0">(DE-588)4152154-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malyshev, V. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menʹshikov, M. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-46197-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511984020</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029352698</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984020</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511984020</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043943727 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:20Z |
institution | BVB |
isbn | 9780511984020 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029352698 |
oclc_num | 992821231 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (169 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Fayolle, G. 1943- Verfasser aut Topics in the constructive theory of countable Markov chains G. Fayolle, V.A. Malyshev, M.V. Menshikov Cambridge Cambridge University Press 1995 1 online resource (169 pages) txt rdacontent c rdamedia cr rdacarrier Markov chains are an important idea, related to random walks, which crops up widely in applied stochastic analysis. They are used, for example, in performance modelling and evaluation of computer networks, queuing networks, and telecommunication systems. The main point of the present book is to provide methods, based on the construction of Lyapunov functions, of determining when a Markov chain is ergodic, null recurrent, or transient. These methods can also be extended to the study of questions of stability. Of particular concern are reflected random walks and reflected Brownian motion. The authors provide not only a self-contained introduction to the theory but also details of how the required Lyapunov functions are constructed in various situations Markov processes Ljapunov-Funktion (DE-588)4274502-0 gnd rswk-swf Markov-Kette (DE-588)4037612-6 gnd rswk-swf Endliche Markov-Kette (DE-588)4152154-7 gnd rswk-swf Markov-Kette (DE-588)4037612-6 s Ljapunov-Funktion (DE-588)4274502-0 s 1\p DE-604 Endliche Markov-Kette (DE-588)4152154-7 s 2\p DE-604 Malyshev, V. A. Sonstige oth Menʹshikov, M. V. Sonstige oth Erscheint auch als Druckausgabe 978-0-521-46197-9 https://doi.org/10.1017/CBO9780511984020 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fayolle, G. 1943- Topics in the constructive theory of countable Markov chains Markov processes Ljapunov-Funktion (DE-588)4274502-0 gnd Markov-Kette (DE-588)4037612-6 gnd Endliche Markov-Kette (DE-588)4152154-7 gnd |
subject_GND | (DE-588)4274502-0 (DE-588)4037612-6 (DE-588)4152154-7 |
title | Topics in the constructive theory of countable Markov chains |
title_auth | Topics in the constructive theory of countable Markov chains |
title_exact_search | Topics in the constructive theory of countable Markov chains |
title_full | Topics in the constructive theory of countable Markov chains G. Fayolle, V.A. Malyshev, M.V. Menshikov |
title_fullStr | Topics in the constructive theory of countable Markov chains G. Fayolle, V.A. Malyshev, M.V. Menshikov |
title_full_unstemmed | Topics in the constructive theory of countable Markov chains G. Fayolle, V.A. Malyshev, M.V. Menshikov |
title_short | Topics in the constructive theory of countable Markov chains |
title_sort | topics in the constructive theory of countable markov chains |
topic | Markov processes Ljapunov-Funktion (DE-588)4274502-0 gnd Markov-Kette (DE-588)4037612-6 gnd Endliche Markov-Kette (DE-588)4152154-7 gnd |
topic_facet | Markov processes Ljapunov-Funktion Markov-Kette Endliche Markov-Kette |
url | https://doi.org/10.1017/CBO9780511984020 |
work_keys_str_mv | AT fayolleg topicsintheconstructivetheoryofcountablemarkovchains AT malyshevva topicsintheconstructivetheoryofcountablemarkovchains AT menʹshikovmv topicsintheconstructivetheoryofcountablemarkovchains |