The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems /:
The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
©2005.
|
Schriftenreihe: | Oxford lecture series in mathematics and its applications ;
29. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras. - ;The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equ. |
Beschreibung: | 1 online resource (xi, 137 pages) : illustrations. |
Bibliographie: | Includes bibliographical references (pages 135-137) and index. |
ISBN: | 9780191523922 0191523925 9786611346416 6611346414 9780198530688 0198530684 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn252698392 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr zn||||||||| | ||
008 | 080318s2005 enka ob 001 0 eng d | ||
040 | |a MT4IT |b eng |e pn |c MT4IT |d OCLCQ |d N$T |d E7B |d OCLCQ |d QE2 |d IDEBK |d AUW |d OCLCQ |d OCLCF |d OCLCO |d OCLCQ |d YDXCP |d EBLCP |d MERUC |d DEBSZ |d OCLCQ |d LOA |d AZK |d OCLCQ |d COCUF |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d OCLCQ |d JG0 |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d CEF |d NRAMU |d CRU |d INT |d VT2 |d AU@ |d LHU |d FVL |d OCLCQ |d WYU |d UWO |d YOU |d CANPU |d OCLCQ |d DKC |d OCLCQ |d W2U |d SFB |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCL |d BRX |d YDX |d OCLCQ |d OCLCO |d OCLCL |d CSG |d SXB |d OCLCQ | ||
015 | |a GBA444894 |2 bnb | ||
016 | 7 | |a 012936797 |2 Uk | |
019 | |a 311053833 |a 437108576 |a 455978848 |a 476257240 |a 613352003 |a 646790481 |a 697514903 |a 756884286 |a 761264091 |a 770768599 |a 960205381 |a 961533424 |a 962727012 |a 988455138 |a 991912421 |a 994821461 |a 1006480811 |a 1037918187 |a 1038698679 |a 1044237552 |a 1044269084 |a 1044291623 |a 1055369752 |a 1056293742 |a 1056359777 |a 1058002994 |a 1059558838 |a 1066440937 |a 1077793345 |a 1079888820 |a 1081203227 |a 1086897915 |a 1099558103 |a 1125399062 |a 1136440779 |a 1228577145 |a 1286907466 | ||
020 | |a 9780191523922 |q (electronic bk.) | ||
020 | |a 0191523925 |q (electronic bk.) | ||
020 | |a 9786611346416 | ||
020 | |a 6611346414 | ||
020 | |a 9780198530688 | ||
020 | |a 0198530684 | ||
020 | |z 9780198530688 |q (Cloth) | ||
020 | |z 0198530684 |q (Cloth) | ||
024 | 3 | |a 9780198530688 |q (hbk.) | |
024 | 8 | |a 9786611346416 | |
035 | |a (OCoLC)252698392 |z (OCoLC)311053833 |z (OCoLC)437108576 |z (OCoLC)455978848 |z (OCoLC)476257240 |z (OCoLC)613352003 |z (OCoLC)646790481 |z (OCoLC)697514903 |z (OCoLC)756884286 |z (OCoLC)761264091 |z (OCoLC)770768599 |z (OCoLC)960205381 |z (OCoLC)961533424 |z (OCoLC)962727012 |z (OCoLC)988455138 |z (OCoLC)991912421 |z (OCoLC)994821461 |z (OCoLC)1006480811 |z (OCoLC)1037918187 |z (OCoLC)1038698679 |z (OCoLC)1044237552 |z (OCoLC)1044269084 |z (OCoLC)1044291623 |z (OCoLC)1055369752 |z (OCoLC)1056293742 |z (OCoLC)1056359777 |z (OCoLC)1058002994 |z (OCoLC)1059558838 |z (OCoLC)1066440937 |z (OCoLC)1077793345 |z (OCoLC)1079888820 |z (OCoLC)1081203227 |z (OCoLC)1086897915 |z (OCoLC)1099558103 |z (OCoLC)1125399062 |z (OCoLC)1136440779 |z (OCoLC)1228577145 |z (OCoLC)1286907466 | ||
050 | 4 | |a QC174.52.Y36 |b E85 2005eb | |
055 | 1 | 3 | |a QC174.52.Y36 |b E85 2005eb |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.482 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Etingof, P. I. |q (Pavel I.), |d 1969- |e author. |0 http://id.loc.gov/authorities/names/n92059577 | |
245 | 1 | 4 | |a The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / |c Pavel Etingof and Frédéric Latour. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c ©2005. | ||
300 | |a 1 online resource (xi, 137 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford lecture series in mathematics and its applications ; |v 29 | |
520 | |a The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras. - ;The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equ. | ||
504 | |a Includes bibliographical references (pages 135-137) and index. | ||
505 | 0 | |a 1 Introduction; 2 Background material; 3 Intertwiners, fusion and exchange operators for Lie algebras; 4 Quantum groups; 5 Intertwiners, fusion and exchange operators for U[sub(q)](g); 6 Dynamical R-matrices and integrable systems; 7 Traces of intertwiners for U[sub(q)](g); 8 Traces of intertwiners and Macdonald polynomials; 9 Dynamical Weyl group; References; Index. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Yang-Baxter equation. |0 http://id.loc.gov/authorities/subjects/sh89007191 | |
650 | 0 | |a Representations of groups. |0 http://id.loc.gov/authorities/subjects/sh85112944 | |
650 | 0 | |a Quantum groups. |0 http://id.loc.gov/authorities/subjects/sh90005801 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 0 | |a Quantum field theory. |0 http://id.loc.gov/authorities/subjects/sh85109461 | |
650 | 6 | |a Équation de Yang-Baxter. | |
650 | 6 | |a Physique mathématique. | |
650 | 6 | |a Groupes quantiques. | |
650 | 6 | |a Théorie quantique des champs. | |
650 | 6 | |a Représentations de groupes. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Quantum field theory |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Quantum groups |2 fast | |
650 | 7 | |a Representations of groups |2 fast | |
650 | 7 | |a Yang-Baxter equation |2 fast | |
700 | 1 | |a Latour, Frédéric, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjHw7YGMjF3jkWFCWvHvd3 |0 http://id.loc.gov/authorities/names/nb2005005362 | |
758 | |i has work: |a The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGr7VfC99JKMRc7kxF7Rw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Etingof, P.I. (Pavel I.), 1969- |t Dynamical Yang-Baxter equation, representation theory, and quantum integrable systems. |d Oxford ; New York : Oxford University Press, ©2005 |w (DLC) 2005280920 |
830 | 0 | |a Oxford lecture series in mathematics and its applications ; |v 29. |0 http://id.loc.gov/authorities/names/n94044383 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259895 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a YBP Library Services |b YANK |n 20450391 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL422449 | ||
938 | |a EBSCOhost |b EBSC |n 259895 | ||
938 | |a YBP Library Services |b YANK |n 2973744 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn252698392 |
---|---|
_version_ | 1816881676261785600 |
adam_text | |
any_adam_object | |
author | Etingof, P. I. (Pavel I.), 1969- Latour, Frédéric |
author_GND | http://id.loc.gov/authorities/names/n92059577 http://id.loc.gov/authorities/names/nb2005005362 |
author_facet | Etingof, P. I. (Pavel I.), 1969- Latour, Frédéric |
author_role | aut aut |
author_sort | Etingof, P. I. 1969- |
author_variant | p i e pi pie f l fl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.52.Y36 E85 2005eb |
callnumber-search | QC174.52.Y36 E85 2005eb |
callnumber-sort | QC 3174.52 Y36 E85 42005EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1 Introduction; 2 Background material; 3 Intertwiners, fusion and exchange operators for Lie algebras; 4 Quantum groups; 5 Intertwiners, fusion and exchange operators for U[sub(q)](g); 6 Dynamical R-matrices and integrable systems; 7 Traces of intertwiners for U[sub(q)](g); 8 Traces of intertwiners and Macdonald polynomials; 9 Dynamical Weyl group; References; Index. |
ctrlnum | (OCoLC)252698392 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06118cam a2200805 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn252698392</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr zn|||||||||</controlfield><controlfield tag="008">080318s2005 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MT4IT</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MT4IT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QE2</subfield><subfield code="d">IDEBK</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AZK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JG0</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">CEF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">LHU</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">UWO</subfield><subfield code="d">YOU</subfield><subfield code="d">CANPU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">W2U</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">BRX</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">CSG</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA444894</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">012936797</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">311053833</subfield><subfield code="a">437108576</subfield><subfield code="a">455978848</subfield><subfield code="a">476257240</subfield><subfield code="a">613352003</subfield><subfield code="a">646790481</subfield><subfield code="a">697514903</subfield><subfield code="a">756884286</subfield><subfield code="a">761264091</subfield><subfield code="a">770768599</subfield><subfield code="a">960205381</subfield><subfield code="a">961533424</subfield><subfield code="a">962727012</subfield><subfield code="a">988455138</subfield><subfield code="a">991912421</subfield><subfield code="a">994821461</subfield><subfield code="a">1006480811</subfield><subfield code="a">1037918187</subfield><subfield code="a">1038698679</subfield><subfield code="a">1044237552</subfield><subfield code="a">1044269084</subfield><subfield code="a">1044291623</subfield><subfield code="a">1055369752</subfield><subfield code="a">1056293742</subfield><subfield code="a">1056359777</subfield><subfield code="a">1058002994</subfield><subfield code="a">1059558838</subfield><subfield code="a">1066440937</subfield><subfield code="a">1077793345</subfield><subfield code="a">1079888820</subfield><subfield code="a">1081203227</subfield><subfield code="a">1086897915</subfield><subfield code="a">1099558103</subfield><subfield code="a">1125399062</subfield><subfield code="a">1136440779</subfield><subfield code="a">1228577145</subfield><subfield code="a">1286907466</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191523922</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191523925</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611346416</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611346414</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198530688</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198530684</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198530688</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198530684</subfield><subfield code="q">(Cloth)</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780198530688</subfield><subfield code="q">(hbk.)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786611346416</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)252698392</subfield><subfield code="z">(OCoLC)311053833</subfield><subfield code="z">(OCoLC)437108576</subfield><subfield code="z">(OCoLC)455978848</subfield><subfield code="z">(OCoLC)476257240</subfield><subfield code="z">(OCoLC)613352003</subfield><subfield code="z">(OCoLC)646790481</subfield><subfield code="z">(OCoLC)697514903</subfield><subfield code="z">(OCoLC)756884286</subfield><subfield code="z">(OCoLC)761264091</subfield><subfield code="z">(OCoLC)770768599</subfield><subfield code="z">(OCoLC)960205381</subfield><subfield code="z">(OCoLC)961533424</subfield><subfield code="z">(OCoLC)962727012</subfield><subfield code="z">(OCoLC)988455138</subfield><subfield code="z">(OCoLC)991912421</subfield><subfield code="z">(OCoLC)994821461</subfield><subfield code="z">(OCoLC)1006480811</subfield><subfield code="z">(OCoLC)1037918187</subfield><subfield code="z">(OCoLC)1038698679</subfield><subfield code="z">(OCoLC)1044237552</subfield><subfield code="z">(OCoLC)1044269084</subfield><subfield code="z">(OCoLC)1044291623</subfield><subfield code="z">(OCoLC)1055369752</subfield><subfield code="z">(OCoLC)1056293742</subfield><subfield code="z">(OCoLC)1056359777</subfield><subfield code="z">(OCoLC)1058002994</subfield><subfield code="z">(OCoLC)1059558838</subfield><subfield code="z">(OCoLC)1066440937</subfield><subfield code="z">(OCoLC)1077793345</subfield><subfield code="z">(OCoLC)1079888820</subfield><subfield code="z">(OCoLC)1081203227</subfield><subfield code="z">(OCoLC)1086897915</subfield><subfield code="z">(OCoLC)1099558103</subfield><subfield code="z">(OCoLC)1125399062</subfield><subfield code="z">(OCoLC)1136440779</subfield><subfield code="z">(OCoLC)1228577145</subfield><subfield code="z">(OCoLC)1286907466</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.52.Y36</subfield><subfield code="b">E85 2005eb</subfield></datafield><datafield tag="055" ind1="1" ind2="3"><subfield code="a">QC174.52.Y36</subfield><subfield code="b">E85 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Etingof, P. I.</subfield><subfield code="q">(Pavel I.),</subfield><subfield code="d">1969-</subfield><subfield code="e">author.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92059577</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems /</subfield><subfield code="c">Pavel Etingof and Frédéric Latour.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">©2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 137 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford lecture series in mathematics and its applications ;</subfield><subfield code="v">29</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras. - ;The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equ.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 135-137) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1 Introduction; 2 Background material; 3 Intertwiners, fusion and exchange operators for Lie algebras; 4 Quantum groups; 5 Intertwiners, fusion and exchange operators for U[sub(q)](g); 6 Dynamical R-matrices and integrable systems; 7 Traces of intertwiners for U[sub(q)](g); 8 Traces of intertwiners and Macdonald polynomials; 9 Dynamical Weyl group; References; Index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Yang-Baxter equation.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh89007191</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Representations of groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85112944</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90005801</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum field theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109461</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équation de Yang-Baxter.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes quantiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Représentations de groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Representations of groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Yang-Baxter equation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Latour, Frédéric,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHw7YGMjF3jkWFCWvHvd3</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2005005362</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGr7VfC99JKMRc7kxF7Rw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Etingof, P.I. (Pavel I.), 1969-</subfield><subfield code="t">Dynamical Yang-Baxter equation, representation theory, and quantum integrable systems.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, ©2005</subfield><subfield code="w">(DLC) 2005280920</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford lecture series in mathematics and its applications ;</subfield><subfield code="v">29.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94044383</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259895</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20450391</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL422449</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">259895</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2973744</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn252698392 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:30Z |
institution | BVB |
isbn | 9780191523922 0191523925 9786611346416 6611346414 9780198530688 0198530684 |
language | English |
oclc_num | 252698392 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 137 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford lecture series in mathematics and its applications ; |
series2 | Oxford lecture series in mathematics and its applications ; |
spelling | Etingof, P. I. (Pavel I.), 1969- author. http://id.loc.gov/authorities/names/n92059577 The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / Pavel Etingof and Frédéric Latour. Oxford ; New York : Oxford University Press, ©2005. 1 online resource (xi, 137 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier Oxford lecture series in mathematics and its applications ; 29 The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equation and its applications, which is an important area in representation theory and quantum groups. The book, which contains many detailed proofs and explicit calculations, will be accessible to graduate students of mathematics, who are familiar with the basics of representation theory of semisimple Lie algebras. - ;The text is based on an established graduate course given at MIT that provides an introduction to the theory of the dynamical Yang-Baxter equ. Includes bibliographical references (pages 135-137) and index. 1 Introduction; 2 Background material; 3 Intertwiners, fusion and exchange operators for Lie algebras; 4 Quantum groups; 5 Intertwiners, fusion and exchange operators for U[sub(q)](g); 6 Dynamical R-matrices and integrable systems; 7 Traces of intertwiners for U[sub(q)](g); 8 Traces of intertwiners and Macdonald polynomials; 9 Dynamical Weyl group; References; Index. Print version record. Yang-Baxter equation. http://id.loc.gov/authorities/subjects/sh89007191 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Équation de Yang-Baxter. Physique mathématique. Groupes quantiques. Théorie quantique des champs. Représentations de groupes. MATHEMATICS Algebra Intermediate. bisacsh Quantum field theory fast Mathematical physics fast Quantum groups fast Representations of groups fast Yang-Baxter equation fast Latour, Frédéric, author. https://id.oclc.org/worldcat/entity/E39PCjHw7YGMjF3jkWFCWvHvd3 http://id.loc.gov/authorities/names/nb2005005362 has work: The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems (Text) https://id.oclc.org/worldcat/entity/E39PCGr7VfC99JKMRc7kxF7Rw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Etingof, P.I. (Pavel I.), 1969- Dynamical Yang-Baxter equation, representation theory, and quantum integrable systems. Oxford ; New York : Oxford University Press, ©2005 (DLC) 2005280920 Oxford lecture series in mathematics and its applications ; 29. http://id.loc.gov/authorities/names/n94044383 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259895 Volltext |
spellingShingle | Etingof, P. I. (Pavel I.), 1969- Latour, Frédéric The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / Oxford lecture series in mathematics and its applications ; 1 Introduction; 2 Background material; 3 Intertwiners, fusion and exchange operators for Lie algebras; 4 Quantum groups; 5 Intertwiners, fusion and exchange operators for U[sub(q)](g); 6 Dynamical R-matrices and integrable systems; 7 Traces of intertwiners for U[sub(q)](g); 8 Traces of intertwiners and Macdonald polynomials; 9 Dynamical Weyl group; References; Index. Yang-Baxter equation. http://id.loc.gov/authorities/subjects/sh89007191 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Équation de Yang-Baxter. Physique mathématique. Groupes quantiques. Théorie quantique des champs. Représentations de groupes. MATHEMATICS Algebra Intermediate. bisacsh Quantum field theory fast Mathematical physics fast Quantum groups fast Representations of groups fast Yang-Baxter equation fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh89007191 http://id.loc.gov/authorities/subjects/sh85112944 http://id.loc.gov/authorities/subjects/sh90005801 http://id.loc.gov/authorities/subjects/sh85082129 http://id.loc.gov/authorities/subjects/sh85109461 |
title | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / |
title_auth | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / |
title_exact_search | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / |
title_full | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / Pavel Etingof and Frédéric Latour. |
title_fullStr | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / Pavel Etingof and Frédéric Latour. |
title_full_unstemmed | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / Pavel Etingof and Frédéric Latour. |
title_short | The dynamical Yang-Baxter equation, representation theory, and quantum integrable systems / |
title_sort | dynamical yang baxter equation representation theory and quantum integrable systems |
topic | Yang-Baxter equation. http://id.loc.gov/authorities/subjects/sh89007191 Representations of groups. http://id.loc.gov/authorities/subjects/sh85112944 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Équation de Yang-Baxter. Physique mathématique. Groupes quantiques. Théorie quantique des champs. Représentations de groupes. MATHEMATICS Algebra Intermediate. bisacsh Quantum field theory fast Mathematical physics fast Quantum groups fast Representations of groups fast Yang-Baxter equation fast |
topic_facet | Yang-Baxter equation. Representations of groups. Quantum groups. Mathematical physics. Quantum field theory. Équation de Yang-Baxter. Physique mathématique. Groupes quantiques. Théorie quantique des champs. Représentations de groupes. MATHEMATICS Algebra Intermediate. Quantum field theory Mathematical physics Quantum groups Representations of groups Yang-Baxter equation |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=259895 |
work_keys_str_mv | AT etingofpi thedynamicalyangbaxterequationrepresentationtheoryandquantumintegrablesystems AT latourfrederic thedynamicalyangbaxterequationrepresentationtheoryandquantumintegrablesystems AT etingofpi dynamicalyangbaxterequationrepresentationtheoryandquantumintegrablesystems AT latourfrederic dynamicalyangbaxterequationrepresentationtheoryandquantumintegrablesystems |