Modular forms on schiermonnikoog:
Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspirati...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2008
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (x, 350 pages) |
ISBN: | 9780511543371 |
DOI: | 10.1017/CBO9780511543371 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043944902 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780511543371 |c Online |9 978-0-511-54337-1 | ||
024 | 7 | |a 10.1017/CBO9780511543371 |2 doi | |
035 | |a (ZDB-20-CBO)CR9780511543371 | ||
035 | |a (OCoLC)992925780 | ||
035 | |a (DE-599)BVBBV043944902 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 512.73 |2 22 | |
245 | 1 | 0 | |a Modular forms on schiermonnikoog |c edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2008 | |
300 | |a 1 online resource (x, 350 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry | ||
650 | 4 | |a Forms, Modular / Congresses | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Edixhoven, B. |d 1962- |4 edt | |
700 | 1 | |a Geer, Gerard van der |4 edt | |
700 | 1 | |a Moonen, Ben |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-0-521-49354-3 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9780511543371 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029353871 | ||
966 | e | |u https://doi.org/10.1017/CBO9780511543371 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9780511543371 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176890394574848 |
---|---|
any_adam_object | |
author2 | Edixhoven, B. 1962- Geer, Gerard van der Moonen, Ben |
author2_role | edt edt edt |
author2_variant | b e be g v d g gvd gvdg b m bm |
author_facet | Edixhoven, B. 1962- Geer, Gerard van der Moonen, Ben |
building | Verbundindex |
bvnumber | BV043944902 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9780511543371 (OCoLC)992925780 (DE-599)BVBBV043944902 |
dewey-full | 512.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.73 |
dewey-search | 512.73 |
dewey-sort | 3512.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9780511543371 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02483nmm a2200421zc 4500</leader><controlfield tag="001">BV043944902</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511543371</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-511-54337-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9780511543371</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9780511543371</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)992925780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043944902</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular forms on schiermonnikoog</subfield><subfield code="c">edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 350 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forms, Modular / Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edixhoven, B.</subfield><subfield code="d">1962-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Geer, Gerard van der</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moonen, Ben</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-521-49354-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9780511543371</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029353871</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543371</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9780511543371</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV043944902 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:22Z |
institution | BVB |
isbn | 9780511543371 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029353871 |
oclc_num | 992925780 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (x, 350 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Modular forms on schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen Cambridge Cambridge University Press 2008 1 online resource (x, 350 pages) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 05 Oct 2015) Modular forms are functions with an enormous amount of symmetry that play a central role in number theory, connecting it with analysis and geometry. They have played a prominent role in mathematics since the 19th century and their study continues to flourish today. Modular forms formed the inspiration for Langlands' conjectures and play an important role in the description of the cohomology of varieties defined over number fields. This collection of up-to-date articles originated from the conference 'Modular Forms' held on the Island of Schiermonnikoog in the Netherlands. A broad range of topics is covered including Hilbert and Siegel modular forms, Weil representations, Tannakian categories and Torelli's theorem. This book is a good source for all researchers and graduate students working on modular forms or related areas of number theory and algebraic geometry Forms, Modular / Congresses (DE-588)1071861417 Konferenzschrift gnd-content Edixhoven, B. 1962- edt Geer, Gerard van der edt Moonen, Ben edt Erscheint auch als Druckausgabe 978-0-521-49354-3 https://doi.org/10.1017/CBO9780511543371 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Modular forms on schiermonnikoog Forms, Modular / Congresses |
subject_GND | (DE-588)1071861417 |
title | Modular forms on schiermonnikoog |
title_auth | Modular forms on schiermonnikoog |
title_exact_search | Modular forms on schiermonnikoog |
title_full | Modular forms on schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen |
title_fullStr | Modular forms on schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen |
title_full_unstemmed | Modular forms on schiermonnikoog edited by Bas Edixhoven, Gerard van der Geer, Ben Moonen |
title_short | Modular forms on schiermonnikoog |
title_sort | modular forms on schiermonnikoog |
topic | Forms, Modular / Congresses |
topic_facet | Forms, Modular / Congresses Konferenzschrift |
url | https://doi.org/10.1017/CBO9780511543371 |
work_keys_str_mv | AT edixhovenb modularformsonschiermonnikoog AT geergerardvander modularformsonschiermonnikoog AT moonenben modularformsonschiermonnikoog |