Bayesian structural equation modeling:
"This book is meant as a guide for implementing Bayesian methods for latent variable models. I have included thorough examples in each chapter, highlighting problems that can arise during estimation, potential solutions, and guides for how to write up findings for a journal article. This book i...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York ; London
The Guilford Press
[2021]
|
Schriftenreihe: | Methodology in the social sciences
|
Schlagworte: | |
Zusammenfassung: | "This book is meant as a guide for implementing Bayesian methods for latent variable models. I have included thorough examples in each chapter, highlighting problems that can arise during estimation, potential solutions, and guides for how to write up findings for a journal article. This book is structured into 12 main chapters, beginning with introductory chapters comprising Part I. Part II is comprised of Chapters 3-5. Each of these chapters deals with various models and techniques related to measurement models within SEM. Part III contains Chapters 6-7, on extending the structural model. Part IV contains Chapters 8-10, on longitudinal and mixture models. Finally, Part IV contains chapters that discuss special topics"-- "This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and excerpts of annotated code in both Mplus and R. The companion website supplies datasets, code, and output for all of the book's examples. "-- |
Beschreibung: | xxvi, 521 Seiten Illustrationen, Diagramme |
ISBN: | 9781462547746 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV047452375 | ||
003 | DE-604 | ||
005 | 20220523 | ||
007 | t | ||
008 | 210902s2021 xxua||| b||| 00||| eng d | ||
020 | |a 9781462547746 |c Hardback |9 978-1-4625-4774-6 | ||
035 | |a (OCoLC)1268918168 | ||
035 | |a (DE-599)BVBBV047452375 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US |a xxk |c XA-GB | ||
049 | |a DE-11 |a DE-20 |a DE-384 |a DE-188 | ||
084 | |a CM 3000 |0 (DE-625)18945: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
100 | 1 | |a Depaoli, Sarah |e Verfasser |0 (DE-588)1252484151 |4 aut | |
245 | 1 | 0 | |a Bayesian structural equation modeling |c Sarah Depaoli ; series editor's note by Todd D. Little |
264 | 1 | |a New York ; London |b The Guilford Press |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xxvi, 521 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Methodology in the social sciences | |
520 | 3 | |a "This book is meant as a guide for implementing Bayesian methods for latent variable models. I have included thorough examples in each chapter, highlighting problems that can arise during estimation, potential solutions, and guides for how to write up findings for a journal article. This book is structured into 12 main chapters, beginning with introductory chapters comprising Part I. Part II is comprised of Chapters 3-5. Each of these chapters deals with various models and techniques related to measurement models within SEM. Part III contains Chapters 6-7, on extending the structural model. Part IV contains Chapters 8-10, on longitudinal and mixture models. Finally, Part IV contains chapters that discuss special topics"-- | |
520 | 3 | |a "This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and excerpts of annotated code in both Mplus and R. The companion website supplies datasets, code, and output for all of the book's examples. "-- | |
650 | 0 | 7 | |a Strukturgleichungsmodell |0 (DE-588)4252999-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Bayesian statistical decision theory | |
653 | 0 | |a Social sciences / Statistical methods | |
653 | 0 | |a Bayesian statistical decision theory | |
653 | 0 | |a Social sciences / Statistical methods | |
689 | 0 | 0 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 0 | 1 | |a Strukturgleichungsmodell |0 (DE-588)4252999-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Little, Todd D. |d 1960- |0 (DE-588)1038167000 |4 aui | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4625-4779-1 |
999 | |a oai:aleph.bib-bvb.de:BVB01-032854330 |
Datensatz im Suchindex
_version_ | 1804182752255279104 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Depaoli, Sarah |
author2 | Little, Todd D. 1960- |
author2_role | aui |
author2_variant | t d l td tdl |
author_GND | (DE-588)1252484151 (DE-588)1038167000 |
author_facet | Depaoli, Sarah Little, Todd D. 1960- |
author_role | aut |
author_sort | Depaoli, Sarah |
author_variant | s d sd |
building | Verbundindex |
bvnumber | BV047452375 |
classification_rvk | CM 3000 SK 830 QH 233 |
ctrlnum | (OCoLC)1268918168 (DE-599)BVBBV047452375 |
discipline | Psychologie Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Psychologie Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03416nam a22004818c 4500</leader><controlfield tag="001">BV047452375</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220523 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210902s2021 xxua||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781462547746</subfield><subfield code="c">Hardback</subfield><subfield code="9">978-1-4625-4774-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1268918168</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047452375</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 3000</subfield><subfield code="0">(DE-625)18945:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Depaoli, Sarah</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1252484151</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian structural equation modeling</subfield><subfield code="c">Sarah Depaoli ; series editor's note by Todd D. Little</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York ; London</subfield><subfield code="b">The Guilford Press</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvi, 521 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Methodology in the social sciences</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book is meant as a guide for implementing Bayesian methods for latent variable models. I have included thorough examples in each chapter, highlighting problems that can arise during estimation, potential solutions, and guides for how to write up findings for a journal article. This book is structured into 12 main chapters, beginning with introductory chapters comprising Part I. Part II is comprised of Chapters 3-5. Each of these chapters deals with various models and techniques related to measurement models within SEM. Part III contains Chapters 6-7, on extending the structural model. Part IV contains Chapters 8-10, on longitudinal and mixture models. Finally, Part IV contains chapters that discuss special topics"--</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and excerpts of annotated code in both Mplus and R. The companion website supplies datasets, code, and output for all of the book's examples. "--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturgleichungsmodell</subfield><subfield code="0">(DE-588)4252999-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences / Statistical methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Social sciences / Statistical methods</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strukturgleichungsmodell</subfield><subfield code="0">(DE-588)4252999-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Little, Todd D.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)1038167000</subfield><subfield code="4">aui</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4625-4779-1</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032854330</subfield></datafield></record></collection> |
id | DE-604.BV047452375 |
illustrated | Illustrated |
index_date | 2024-07-03T18:03:44Z |
indexdate | 2024-07-10T09:12:32Z |
institution | BVB |
isbn | 9781462547746 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032854330 |
oclc_num | 1268918168 |
open_access_boolean | |
owner | DE-11 DE-20 DE-384 DE-188 |
owner_facet | DE-11 DE-20 DE-384 DE-188 |
physical | xxvi, 521 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | The Guilford Press |
record_format | marc |
series2 | Methodology in the social sciences |
spelling | Depaoli, Sarah Verfasser (DE-588)1252484151 aut Bayesian structural equation modeling Sarah Depaoli ; series editor's note by Todd D. Little New York ; London The Guilford Press [2021] © 2021 xxvi, 521 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Methodology in the social sciences "This book is meant as a guide for implementing Bayesian methods for latent variable models. I have included thorough examples in each chapter, highlighting problems that can arise during estimation, potential solutions, and guides for how to write up findings for a journal article. This book is structured into 12 main chapters, beginning with introductory chapters comprising Part I. Part II is comprised of Chapters 3-5. Each of these chapters deals with various models and techniques related to measurement models within SEM. Part III contains Chapters 6-7, on extending the structural model. Part IV contains Chapters 8-10, on longitudinal and mixture models. Finally, Part IV contains chapters that discuss special topics"-- "This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and excerpts of annotated code in both Mplus and R. The companion website supplies datasets, code, and output for all of the book's examples. "-- Strukturgleichungsmodell (DE-588)4252999-2 gnd rswk-swf Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf Bayesian statistical decision theory Social sciences / Statistical methods Bayes-Verfahren (DE-588)4204326-8 s Strukturgleichungsmodell (DE-588)4252999-2 s DE-604 Little, Todd D. 1960- (DE-588)1038167000 aui Erscheint auch als Online-Ausgabe 978-1-4625-4779-1 |
spellingShingle | Depaoli, Sarah Bayesian structural equation modeling Strukturgleichungsmodell (DE-588)4252999-2 gnd Bayes-Verfahren (DE-588)4204326-8 gnd |
subject_GND | (DE-588)4252999-2 (DE-588)4204326-8 |
title | Bayesian structural equation modeling |
title_auth | Bayesian structural equation modeling |
title_exact_search | Bayesian structural equation modeling |
title_exact_search_txtP | Bayesian structural equation modeling |
title_full | Bayesian structural equation modeling Sarah Depaoli ; series editor's note by Todd D. Little |
title_fullStr | Bayesian structural equation modeling Sarah Depaoli ; series editor's note by Todd D. Little |
title_full_unstemmed | Bayesian structural equation modeling Sarah Depaoli ; series editor's note by Todd D. Little |
title_short | Bayesian structural equation modeling |
title_sort | bayesian structural equation modeling |
topic | Strukturgleichungsmodell (DE-588)4252999-2 gnd Bayes-Verfahren (DE-588)4204326-8 gnd |
topic_facet | Strukturgleichungsmodell Bayes-Verfahren |
work_keys_str_mv | AT depaolisarah bayesianstructuralequationmodeling AT littletoddd bayesianstructuralequationmodeling |