Adaptive online energy management controls for fuel cell and battery hybrid vehicles:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Düren
Shaker Verlag
2023
|
Ausgabe: | 1. Auflage |
Schriftenreihe: | Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung
51 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xii, 148 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 237 g |
ISBN: | 9783844092042 3844092048 |
Internformat
MARC
LEADER | 00000nam a22000008cb4500 | ||
---|---|---|---|
001 | BV049371768 | ||
003 | DE-604 | ||
005 | 20240618 | ||
007 | t| | ||
008 | 231018s2023 gw a||| m||| 00||| eng d | ||
015 | |a 23,N32 |2 dnb | ||
016 | 7 | |a 1297988159 |2 DE-101 | |
020 | |a 9783844092042 |9 978-3-8440-9204-2 | ||
020 | |a 3844092048 |9 3-8440-9204-8 | ||
035 | |a (OCoLC)1418848571 | ||
035 | |a (DE-599)DNB1297988159 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-NW | ||
049 | |a DE-83 | ||
084 | |a ZN 8730 |0 (DE-625)157644: |2 rvk | ||
100 | 1 | |a Deng, Kai |d 1991- |e Verfasser |0 (DE-588)1303005581 |4 aut | |
245 | 1 | 0 | |a Adaptive online energy management controls for fuel cell and battery hybrid vehicles |c Kai Deng |
264 | 1 | |a Düren |b Shaker Verlag |c 2023 | |
300 | |a xii, 148 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm, 237 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung |v 51 | |
502 | |b Dissertation |c RWTH Aachen University |d 2023 | ||
650 | 0 | 7 | |a Hybridfahrzeug |0 (DE-588)7524499-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wasserstofferzeugung |0 (DE-588)4189271-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Brennstoffzelle |0 (DE-588)4008195-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Akkumulator |0 (DE-588)4068497-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Energieeffizienz |0 (DE-588)7660153-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellprädiktive Regelung |0 (DE-588)1135937567 |2 gnd |9 rswk-swf |
653 | |a hydrogen powertrain | ||
653 | |a energy management | ||
653 | |a model predictive control | ||
653 | |a deep reinforcement learning | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Hybridfahrzeug |0 (DE-588)7524499-8 |D s |
689 | 0 | 1 | |a Brennstoffzelle |0 (DE-588)4008195-3 |D s |
689 | 0 | 2 | |a Wasserstofferzeugung |0 (DE-588)4189271-9 |D s |
689 | 0 | 3 | |a Akkumulator |0 (DE-588)4068497-0 |D s |
689 | 0 | 4 | |a Energieeffizienz |0 (DE-588)7660153-5 |D s |
689 | 0 | 5 | |a Modellprädiktive Regelung |0 (DE-588)1135937567 |D s |
689 | 0 | 6 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung |v 51 |w (DE-604)BV021706262 |9 51 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034631706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034631706 |
Datensatz im Suchindex
_version_ | 1823932152814764032 |
---|---|
adam_text |
CONTENTS
LIST
OF
ABBREVIATIONS
XI
1
INTRODUCTION
1
1.1
BASICS
TO
HYBRID
VEHICLES
.
2
1.2
LITERATURE
REVIEW
.
4
1.3
MOTIVATION
AND
CONTRIBUTIONS
.
9
1.4
OUTLINE
OF
THE
THESIS
.
11
2
THEORETICAL
BACKGROUNDS
OF
MODEL
PREDICTIVE
CONTROL
AND
DEEP
REINFORCEMENT
LEARNING
13
2.1
MODEL
PREDICTIVE
CONTROL
.
13
2.1.1
PRINCIPLE
OF
MODEL
PREDICTIVE
CONTROL
.
13
2.1.2
FORMULATION
OF
THE
OPTIMIZATION
PROBLEM
.
15
2.1.3
CALCULATION
AND
APPLICATION
OF
CONTROL
COMMAND
.
20
2.1.4
AC
ADO
TOOLKIT
.
24
2.2
DEEP
REINFORCEMENT
LEARNING
.
26
2.2.1
PERCEPTRONS
.
26
2.2.2
BACK-PROPAGATION
ALGORITHM
.
29
2.2.3
REINFORCEMENT
LEARNING
.
31
2.2.4
REINFORCEMENT
LEARNING
WITH
NEURAL
NETWORKS
.
33
2.2.5
TD3
ALGORITHM
.
34
2.3
CHAPTER
SUMMARY
.
35
3
SYSTEM
MODELING
OF
FUEL
CELL
AND
BATTERY
POWERED
HYBRID
RAILWAY
VEHICLES
39
3.1
ENVIRONMENT
AND
VEHICLE
DYNAMICS
.
39
3.2
DRIVELINE
COMPONENTS
.
41
3.2.1
ELECTRIC
MACHINE,
INVERTER
AND
GEARBOX
.
41
3.2.2
AUXILIARY
SYSTEM
.
43
3.2.3
DC/DC
CONVERTER
.
44
3.3
ENERGY
SOURCE
SYSTEM
.
46
3.3.1
BATTERY
SYSTEM
.
46
3.3.2
FUEL
CELL
SYSTEM
.
48
3.4
ENERGY
MANAGEMENT
SYSTEM
.
52
3.5
CHAPTER
SUMMARY
.
53
4
MODEL
PREDICTIVE
CONTROL
BASED
ENERGY
MANAGEMENT
55
4.1
HIERARCHICAL
CONTROL
STRUCTURE
.
55
4.2
ECO-DRIVING
CONTROL
.
56
4.2.1
STATES,
CONTROL
VARIABLES
AND
OUTPUTS
.
57
4.2.2
CONSTRAINTS
.
58
4.2.3
COST
FUNCTION
.
58
4.2.4
PRECISION
MODE
.
60
4.3
PMP-MPC
BASED
ENERGY
MANAGEMENT
CONTROLLER
.
61
4.3.1
PMP-BASED
MPC
.
61
4.3.2
STATES,
CONTROL
VARIABLES
AND
OUTPUTS
.
62
4.3.3
CONSTRAINTS
.
62
4.3.4
PREDICTION
MODEL
IN
MPC
.
63
4.3.5
PROBLEM
FORMULATION
.
64
4.3.6
ESTIMATION
OF
THE
CO-STATE
IN
PMP
.
66
4.4
CHAPTER
SUMMARY
.
71
5
DEEP
REINFORCEMENT
LEARNING
BASED
ENERGY
MANAGEMENT
73
5.1
TD3-BASED
ENERGY
MANAGEMENT
STRATEGY
.
73
5.1.1
TD3-BASED
AGENT
ACTIONS
.
74
5.1.2
ENVIRONMENT
STATES
.
74
5.1.3
REWARDS
.
75
5.2
IMPLEMENTATION
OF
TD3
ALGORITHM
.
77
5.2.1
ENVIRONMENT
SETTINGS
.
77
5.2.2
HYPERPARAMETERS
AND
TRAINING
SETTINGS
.
77
5.2.3
TRAINING
PROCESS
.
80
5.3
IMPACT
OF
THE
REWARD
SETTINGS
ON
CONVERGENCE
.
83
5.4
CHAPTER
SUMMARY
.
85
6
SIMULATION
RESULTS
AND
MEASUREMENT
VALIDATION
87
6.1
SIMULATION
RESULTS
OF
MPC-BASED
ENERGY
MANAGEMENT
.
87
6.1.1
ECO-DRIVING
AND
DRIVING
PERFORMANCE
.
88
6.1.2
BATTERY
'
S
CHARGE-SUSTAINING
.
91
6.1.3
FUEL
ECONOMY
.
94
6.1.4
FUEL
CELL
AGING
.
95
6.1.5
SENSITIVITY
ANALYSIS
.
97
6.2
SIMULATION
RESULTS
OF
DRL-BASED
ENERGY
MANAGEMENT
.
98
6.2.1
BATTERY
'
S
CHARGE-SUSTAINING
.
100
6.2.2
FUEL
CELL
AGING
.
102
6.2.3
OPERATIONAL
COST
AND
FUEL
ECONOMY
.
103
6.3
COMPARISON
AND
DISCUSSION
OF
THE
TWO
STRATEGIES
.
105
6.3.1
ENERGY
DISTRIBUTION
PERFORMANCE
.
106
6.3.2
OPERATIONAL
COST
.
107
6.4
HARDWARE-IN-THE-LOOP
VALIDATION
.
109
6.4.1
HIL
SETUP
.
109
6.4.2
HIL
RESULTS
.
112
6.5
CHAPTER
SUMMARY
.
115
7
CONCLUSIONS
AND
PERSPECTIVES
119
7.1
SUMMARY
.
119
7.2
FUTURE
WORK
.
122
LIST
OF
SYMBOLS
125
REFERENCES
131
OWN
PUBLICATIONS
141
SUPERVISED
THESES
145
CURRICULUM
VITAE
147 |
adam_txt |
CONTENTS
LIST
OF
ABBREVIATIONS
XI
1
INTRODUCTION
1
1.1
BASICS
TO
HYBRID
VEHICLES
.
2
1.2
LITERATURE
REVIEW
.
4
1.3
MOTIVATION
AND
CONTRIBUTIONS
.
9
1.4
OUTLINE
OF
THE
THESIS
.
11
2
THEORETICAL
BACKGROUNDS
OF
MODEL
PREDICTIVE
CONTROL
AND
DEEP
REINFORCEMENT
LEARNING
13
2.1
MODEL
PREDICTIVE
CONTROL
.
13
2.1.1
PRINCIPLE
OF
MODEL
PREDICTIVE
CONTROL
.
13
2.1.2
FORMULATION
OF
THE
OPTIMIZATION
PROBLEM
.
15
2.1.3
CALCULATION
AND
APPLICATION
OF
CONTROL
COMMAND
.
20
2.1.4
AC
ADO
TOOLKIT
.
24
2.2
DEEP
REINFORCEMENT
LEARNING
.
26
2.2.1
PERCEPTRONS
.
26
2.2.2
BACK-PROPAGATION
ALGORITHM
.
29
2.2.3
REINFORCEMENT
LEARNING
.
31
2.2.4
REINFORCEMENT
LEARNING
WITH
NEURAL
NETWORKS
.
33
2.2.5
TD3
ALGORITHM
.
34
2.3
CHAPTER
SUMMARY
.
35
3
SYSTEM
MODELING
OF
FUEL
CELL
AND
BATTERY
POWERED
HYBRID
RAILWAY
VEHICLES
39
3.1
ENVIRONMENT
AND
VEHICLE
DYNAMICS
.
39
3.2
DRIVELINE
COMPONENTS
.
41
3.2.1
ELECTRIC
MACHINE,
INVERTER
AND
GEARBOX
.
41
3.2.2
AUXILIARY
SYSTEM
.
43
3.2.3
DC/DC
CONVERTER
.
44
3.3
ENERGY
SOURCE
SYSTEM
.
46
3.3.1
BATTERY
SYSTEM
.
46
3.3.2
FUEL
CELL
SYSTEM
.
48
3.4
ENERGY
MANAGEMENT
SYSTEM
.
52
3.5
CHAPTER
SUMMARY
.
53
4
MODEL
PREDICTIVE
CONTROL
BASED
ENERGY
MANAGEMENT
55
4.1
HIERARCHICAL
CONTROL
STRUCTURE
.
55
4.2
ECO-DRIVING
CONTROL
.
56
4.2.1
STATES,
CONTROL
VARIABLES
AND
OUTPUTS
.
57
4.2.2
CONSTRAINTS
.
58
4.2.3
COST
FUNCTION
.
58
4.2.4
PRECISION
MODE
.
60
4.3
PMP-MPC
BASED
ENERGY
MANAGEMENT
CONTROLLER
.
61
4.3.1
PMP-BASED
MPC
.
61
4.3.2
STATES,
CONTROL
VARIABLES
AND
OUTPUTS
.
62
4.3.3
CONSTRAINTS
.
62
4.3.4
PREDICTION
MODEL
IN
MPC
.
63
4.3.5
PROBLEM
FORMULATION
.
64
4.3.6
ESTIMATION
OF
THE
CO-STATE
IN
PMP
.
66
4.4
CHAPTER
SUMMARY
.
71
5
DEEP
REINFORCEMENT
LEARNING
BASED
ENERGY
MANAGEMENT
73
5.1
TD3-BASED
ENERGY
MANAGEMENT
STRATEGY
.
73
5.1.1
TD3-BASED
AGENT
ACTIONS
.
74
5.1.2
ENVIRONMENT
STATES
.
74
5.1.3
REWARDS
.
75
5.2
IMPLEMENTATION
OF
TD3
ALGORITHM
.
77
5.2.1
ENVIRONMENT
SETTINGS
.
77
5.2.2
HYPERPARAMETERS
AND
TRAINING
SETTINGS
.
77
5.2.3
TRAINING
PROCESS
.
80
5.3
IMPACT
OF
THE
REWARD
SETTINGS
ON
CONVERGENCE
.
83
5.4
CHAPTER
SUMMARY
.
85
6
SIMULATION
RESULTS
AND
MEASUREMENT
VALIDATION
87
6.1
SIMULATION
RESULTS
OF
MPC-BASED
ENERGY
MANAGEMENT
.
87
6.1.1
ECO-DRIVING
AND
DRIVING
PERFORMANCE
.
88
6.1.2
BATTERY
'
S
CHARGE-SUSTAINING
.
91
6.1.3
FUEL
ECONOMY
.
94
6.1.4
FUEL
CELL
AGING
.
95
6.1.5
SENSITIVITY
ANALYSIS
.
97
6.2
SIMULATION
RESULTS
OF
DRL-BASED
ENERGY
MANAGEMENT
.
98
6.2.1
BATTERY
'
S
CHARGE-SUSTAINING
.
100
6.2.2
FUEL
CELL
AGING
.
102
6.2.3
OPERATIONAL
COST
AND
FUEL
ECONOMY
.
103
6.3
COMPARISON
AND
DISCUSSION
OF
THE
TWO
STRATEGIES
.
105
6.3.1
ENERGY
DISTRIBUTION
PERFORMANCE
.
106
6.3.2
OPERATIONAL
COST
.
107
6.4
HARDWARE-IN-THE-LOOP
VALIDATION
.
109
6.4.1
HIL
SETUP
.
109
6.4.2
HIL
RESULTS
.
112
6.5
CHAPTER
SUMMARY
.
115
7
CONCLUSIONS
AND
PERSPECTIVES
119
7.1
SUMMARY
.
119
7.2
FUTURE
WORK
.
122
LIST
OF
SYMBOLS
125
REFERENCES
131
OWN
PUBLICATIONS
141
SUPERVISED
THESES
145
CURRICULUM
VITAE
147 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Deng, Kai 1991- |
author_GND | (DE-588)1303005581 |
author_facet | Deng, Kai 1991- |
author_role | aut |
author_sort | Deng, Kai 1991- |
author_variant | k d kd |
building | Verbundindex |
bvnumber | BV049371768 |
classification_rvk | ZN 8730 |
ctrlnum | (OCoLC)1418848571 (DE-599)DNB1297988159 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 1. Auflage |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008cb4500</leader><controlfield tag="001">BV049371768</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240618</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">231018s2023 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N32</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1297988159</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783844092042</subfield><subfield code="9">978-3-8440-9204-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3844092048</subfield><subfield code="9">3-8440-9204-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418848571</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1297988159</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-NW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8730</subfield><subfield code="0">(DE-625)157644:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deng, Kai</subfield><subfield code="d">1991-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1303005581</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive online energy management controls for fuel cell and battery hybrid vehicles</subfield><subfield code="c">Kai Deng</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Düren</subfield><subfield code="b">Shaker Verlag</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xii, 148 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm, 237 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung</subfield><subfield code="v">51</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">RWTH Aachen University</subfield><subfield code="d">2023</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hybridfahrzeug</subfield><subfield code="0">(DE-588)7524499-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserstofferzeugung</subfield><subfield code="0">(DE-588)4189271-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Akkumulator</subfield><subfield code="0">(DE-588)4068497-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieeffizienz</subfield><subfield code="0">(DE-588)7660153-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellprädiktive Regelung</subfield><subfield code="0">(DE-588)1135937567</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hydrogen powertrain</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">energy management</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">model predictive control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep reinforcement learning</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hybridfahrzeug</subfield><subfield code="0">(DE-588)7524499-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wasserstofferzeugung</subfield><subfield code="0">(DE-588)4189271-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Akkumulator</subfield><subfield code="0">(DE-588)4068497-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Energieeffizienz</subfield><subfield code="0">(DE-588)7660153-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Modellprädiktive Regelung</subfield><subfield code="0">(DE-588)1135937567</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung</subfield><subfield code="v">51</subfield><subfield code="w">(DE-604)BV021706262</subfield><subfield code="9">51</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034631706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034631706</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049371768 |
illustrated | Illustrated |
index_date | 2024-07-03T22:54:41Z |
indexdate | 2025-02-13T09:00:48Z |
institution | BVB |
institution_GND | (DE-588)1064118135 |
isbn | 9783844092042 3844092048 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034631706 |
oclc_num | 1418848571 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xii, 148 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 237 g |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Shaker Verlag |
record_format | marc |
series | Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung |
series2 | Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung |
spelling | Deng, Kai 1991- Verfasser (DE-588)1303005581 aut Adaptive online energy management controls for fuel cell and battery hybrid vehicles Kai Deng Düren Shaker Verlag 2023 xii, 148 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm, 237 g txt rdacontent n rdamedia nc rdacarrier Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung 51 Dissertation RWTH Aachen University 2023 Hybridfahrzeug (DE-588)7524499-8 gnd rswk-swf Wasserstofferzeugung (DE-588)4189271-9 gnd rswk-swf Brennstoffzelle (DE-588)4008195-3 gnd rswk-swf Deep Learning (DE-588)1135597375 gnd rswk-swf Akkumulator (DE-588)4068497-0 gnd rswk-swf Energieeffizienz (DE-588)7660153-5 gnd rswk-swf Modellprädiktive Regelung (DE-588)1135937567 gnd rswk-swf hydrogen powertrain energy management model predictive control deep reinforcement learning (DE-588)4113937-9 Hochschulschrift gnd-content Hybridfahrzeug (DE-588)7524499-8 s Brennstoffzelle (DE-588)4008195-3 s Wasserstofferzeugung (DE-588)4189271-9 s Akkumulator (DE-588)4068497-0 s Energieeffizienz (DE-588)7660153-5 s Modellprädiktive Regelung (DE-588)1135937567 s Deep Learning (DE-588)1135597375 s DE-604 Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung 51 (DE-604)BV021706262 51 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034631706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Deng, Kai 1991- Adaptive online energy management controls for fuel cell and battery hybrid vehicles Aachener Schriftenreihe zur Elektromagnetischen Energiewandlung Hybridfahrzeug (DE-588)7524499-8 gnd Wasserstofferzeugung (DE-588)4189271-9 gnd Brennstoffzelle (DE-588)4008195-3 gnd Deep Learning (DE-588)1135597375 gnd Akkumulator (DE-588)4068497-0 gnd Energieeffizienz (DE-588)7660153-5 gnd Modellprädiktive Regelung (DE-588)1135937567 gnd |
subject_GND | (DE-588)7524499-8 (DE-588)4189271-9 (DE-588)4008195-3 (DE-588)1135597375 (DE-588)4068497-0 (DE-588)7660153-5 (DE-588)1135937567 (DE-588)4113937-9 |
title | Adaptive online energy management controls for fuel cell and battery hybrid vehicles |
title_auth | Adaptive online energy management controls for fuel cell and battery hybrid vehicles |
title_exact_search | Adaptive online energy management controls for fuel cell and battery hybrid vehicles |
title_exact_search_txtP | Adaptive Online Energy Management Controls for Fuel Cell and Battery Hybrid Vehicles |
title_full | Adaptive online energy management controls for fuel cell and battery hybrid vehicles Kai Deng |
title_fullStr | Adaptive online energy management controls for fuel cell and battery hybrid vehicles Kai Deng |
title_full_unstemmed | Adaptive online energy management controls for fuel cell and battery hybrid vehicles Kai Deng |
title_short | Adaptive online energy management controls for fuel cell and battery hybrid vehicles |
title_sort | adaptive online energy management controls for fuel cell and battery hybrid vehicles |
topic | Hybridfahrzeug (DE-588)7524499-8 gnd Wasserstofferzeugung (DE-588)4189271-9 gnd Brennstoffzelle (DE-588)4008195-3 gnd Deep Learning (DE-588)1135597375 gnd Akkumulator (DE-588)4068497-0 gnd Energieeffizienz (DE-588)7660153-5 gnd Modellprädiktive Regelung (DE-588)1135937567 gnd |
topic_facet | Hybridfahrzeug Wasserstofferzeugung Brennstoffzelle Deep Learning Akkumulator Energieeffizienz Modellprädiktive Regelung Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034631706&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021706262 |
work_keys_str_mv | AT dengkai adaptiveonlineenergymanagementcontrolsforfuelcellandbatteryhybridvehicles |