Solution of Crack Problems: The Distributed Dislocation Technique
This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practic...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1996
|
Schriftenreihe: | Solid Mechanics and Its Applications
44 |
Schlagworte: | |
Online-Zugang: | BTU01 Volltext |
Zusammenfassung: | This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself |
Beschreibung: | 1 Online-Ressource (XII, 308 p) |
ISBN: | 9789401586481 |
DOI: | 10.1007/978-94-015-8648-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV045186088 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 180912s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789401586481 |9 978-94-015-8648-1 | ||
024 | 7 | |a 10.1007/978-94-015-8648-1 |2 doi | |
035 | |a (ZDB-2-ENG)978-94-015-8648-1 | ||
035 | |a (OCoLC)1053825178 | ||
035 | |a (DE-599)BVBBV045186088 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
082 | 0 | |a 531 |2 23 | |
100 | 1 | |a Hills, D. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solution of Crack Problems |b The Distributed Dislocation Technique |c by D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1996 | |
300 | |a 1 Online-Ressource (XII, 308 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Solid Mechanics and Its Applications |v 44 | |
520 | |a This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Physics | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Applied mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 0 | 7 | |a Bruchmechanik |0 (DE-588)4112837-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bruchmechanik |0 (DE-588)4112837-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kelly, P. A. |4 aut | |
700 | 1 | |a Dai, D. N. |4 aut | |
700 | 1 | |a Korsunsky, A. M. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9789048146512 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8648-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-ENG | ||
940 | 1 | |q ZDB-2-ENG_Archiv | |
999 | |a oai:aleph.bib-bvb.de:BVB01-030575265 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-94-015-8648-1 |l BTU01 |p ZDB-2-ENG |q ZDB-2-ENG_Archiv |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804178876689022976 |
---|---|
any_adam_object | |
author | Hills, D. A. Kelly, P. A. Dai, D. N. Korsunsky, A. M. |
author_facet | Hills, D. A. Kelly, P. A. Dai, D. N. Korsunsky, A. M. |
author_role | aut aut aut aut |
author_sort | Hills, D. A. |
author_variant | d a h da dah p a k pa pak d n d dn dnd a m k am amk |
building | Verbundindex |
bvnumber | BV045186088 |
collection | ZDB-2-ENG |
ctrlnum | (ZDB-2-ENG)978-94-015-8648-1 (OCoLC)1053825178 (DE-599)BVBBV045186088 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-015-8648-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03496nmm a2200565zcb4500</leader><controlfield tag="001">BV045186088</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">180912s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401586481</subfield><subfield code="9">978-94-015-8648-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8648-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-ENG)978-94-015-8648-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1053825178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV045186088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hills, D. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solution of Crack Problems</subfield><subfield code="b">The Distributed Dislocation Technique</subfield><subfield code="c">by D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 308 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Solid Mechanics and Its Applications</subfield><subfield code="v">44</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kelly, P. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, D. N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korsunsky, A. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9789048146512</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8648-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-ENG_Archiv</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030575265</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-94-015-8648-1</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="q">ZDB-2-ENG_Archiv</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV045186088 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T08:10:56Z |
institution | BVB |
isbn | 9789401586481 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030575265 |
oclc_num | 1053825178 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | 1 Online-Ressource (XII, 308 p) |
psigel | ZDB-2-ENG ZDB-2-ENG_Archiv ZDB-2-ENG ZDB-2-ENG_Archiv |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Solid Mechanics and Its Applications |
spelling | Hills, D. A. Verfasser aut Solution of Crack Problems The Distributed Dislocation Technique by D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky Dordrecht Springer Netherlands 1996 1 Online-Ressource (XII, 308 p) txt rdacontent c rdamedia cr rdacarrier Solid Mechanics and Its Applications 44 This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself Physics Mechanics Appl.Mathematics/Computational Methods of Engineering Integral Equations Integral equations Applied mathematics Engineering mathematics Bruchmechanik (DE-588)4112837-0 gnd rswk-swf Bruchmechanik (DE-588)4112837-0 s 1\p DE-604 Kelly, P. A. aut Dai, D. N. aut Korsunsky, A. M. aut Erscheint auch als Druck-Ausgabe 9789048146512 https://doi.org/10.1007/978-94-015-8648-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hills, D. A. Kelly, P. A. Dai, D. N. Korsunsky, A. M. Solution of Crack Problems The Distributed Dislocation Technique Physics Mechanics Appl.Mathematics/Computational Methods of Engineering Integral Equations Integral equations Applied mathematics Engineering mathematics Bruchmechanik (DE-588)4112837-0 gnd |
subject_GND | (DE-588)4112837-0 |
title | Solution of Crack Problems The Distributed Dislocation Technique |
title_auth | Solution of Crack Problems The Distributed Dislocation Technique |
title_exact_search | Solution of Crack Problems The Distributed Dislocation Technique |
title_full | Solution of Crack Problems The Distributed Dislocation Technique by D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky |
title_fullStr | Solution of Crack Problems The Distributed Dislocation Technique by D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky |
title_full_unstemmed | Solution of Crack Problems The Distributed Dislocation Technique by D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky |
title_short | Solution of Crack Problems |
title_sort | solution of crack problems the distributed dislocation technique |
title_sub | The Distributed Dislocation Technique |
topic | Physics Mechanics Appl.Mathematics/Computational Methods of Engineering Integral Equations Integral equations Applied mathematics Engineering mathematics Bruchmechanik (DE-588)4112837-0 gnd |
topic_facet | Physics Mechanics Appl.Mathematics/Computational Methods of Engineering Integral Equations Integral equations Applied mathematics Engineering mathematics Bruchmechanik |
url | https://doi.org/10.1007/978-94-015-8648-1 |
work_keys_str_mv | AT hillsda solutionofcrackproblemsthedistributeddislocationtechnique AT kellypa solutionofcrackproblemsthedistributeddislocationtechnique AT daidn solutionofcrackproblemsthedistributeddislocationtechnique AT korsunskyam solutionofcrackproblemsthedistributeddislocationtechnique |