Photonic applications for radio systems and networks /:
This hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to th...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston :
Artech House,
[2019]
|
Schriftenreihe: | Artech House applied photonics series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to the transmission modeling techniques for the design of a radio access optical network. The main linear and non-linear propagation effects in optical fiber are covered. The book introduces mobile network designers to the optical technologies used in digital and analog radio access networks, such as optical amplifiers and transmitters, and describes different deployment scenarios, including point-to-point fiber systems, wavelength-division multiplexing systems, and passive optical networks. New integrated photonic technologies for optical switching are also discussed. The book illustrates the principles of optical beamforming and explains how optical technologies can be used to provide accurate phase and frequency control of antenna elements. The new architecture of the optical transport network, driven by the new, challenging requirements that 5G poses in terms of high capacity, high energy efficiency, low latency and low cost is discussed. The use of photonic devices to perform tasks as radio-frequency generation and beamforming, with improved accuracy and cost compared to traditional electronic systems, especially when moving to mm-waves is also explored. Readers also learn the replacement of electric interconnect systems with higher speed and more energy efficient optical lines to perform more effectively computationally demanding baseband processing in 5G. All presented propagation models can be implemented in a spreadsheet, in order to provide the designer with simple rules of thumbs for network planning. |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references and index |
ISBN: | 9781630816667 1630816663 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1124944867 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 191001s2019 maua ob 001 0 eng d | ||
040 | |a STF |b eng |e rda |e pn |c STF |d EBLCP |d YDX |d YDXIT |d N$T |d OCLCF |d CUV |d OCLCO |d OCLCQ |d UKAHL |d BWN |d K6U |d IEEEE |d CNNOR |d VT2 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 1129779134 |a 1144896169 |a 1165770687 |a 1241802120 |a 1258912033 |a 1262669042 |a 1276821509 |a 1276929734 | ||
020 | |a 9781630816667 | ||
020 | |a 1630816663 | ||
020 | |z 9781630816650 | ||
020 | |z 1630816655 | ||
035 | |a (OCoLC)1124944867 |z (OCoLC)1129779134 |z (OCoLC)1144896169 |z (OCoLC)1165770687 |z (OCoLC)1241802120 |z (OCoLC)1258912033 |z (OCoLC)1262669042 |z (OCoLC)1276821509 |z (OCoLC)1276929734 | ||
050 | 4 | |a TK5103.59 |b .C38 2019eb | |
082 | 7 | |a 621.382/7 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Cavaliere, Fabio., |e author. | |
245 | 1 | 0 | |a Photonic applications for radio systems and networks / |c Fabio Cavaliere, Antonio D'Errico |
264 | 1 | |a Boston : |b Artech House, |c [2019] | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rdaft | ||
490 | 1 | |a Artech House applied photonics series | |
588 | 0 | |a Online resource; title from PDF title page (viewed on March 09, 2020) | |
504 | |a Includes bibliographical references and index | ||
505 | 0 | |a Intro; Photonic Applications for Radio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth | |
505 | 8 | |a 2.3.4 Time Division Duplex 5G Systems; 2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces | |
505 | 8 | |a 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul; 3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude | |
505 | 8 | |a 4.3.4 Error Vector Magnitude; 4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References | |
505 | 8 | |a Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks; 5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network | |
520 | |a This hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to the transmission modeling techniques for the design of a radio access optical network. The main linear and non-linear propagation effects in optical fiber are covered. The book introduces mobile network designers to the optical technologies used in digital and analog radio access networks, such as optical amplifiers and transmitters, and describes different deployment scenarios, including point-to-point fiber systems, wavelength-division multiplexing systems, and passive optical networks. New integrated photonic technologies for optical switching are also discussed. The book illustrates the principles of optical beamforming and explains how optical technologies can be used to provide accurate phase and frequency control of antenna elements. The new architecture of the optical transport network, driven by the new, challenging requirements that 5G poses in terms of high capacity, high energy efficiency, low latency and low cost is discussed. The use of photonic devices to perform tasks as radio-frequency generation and beamforming, with improved accuracy and cost compared to traditional electronic systems, especially when moving to mm-waves is also explored. Readers also learn the replacement of electric interconnect systems with higher speed and more energy efficient optical lines to perform more effectively computationally demanding baseband processing in 5G. All presented propagation models can be implemented in a spreadsheet, in order to provide the designer with simple rules of thumbs for network planning. | ||
650 | 0 | |a Optical communications |x Technological innovations. | |
650 | 0 | |a Photonics. |0 http://id.loc.gov/authorities/subjects/sh85101397 | |
650 | 0 | |a Mobile communication systems. |0 http://id.loc.gov/authorities/subjects/sh85086371 | |
650 | 6 | |a Télécommunications optiques |x Innovations. | |
650 | 6 | |a Photonique. | |
650 | 6 | |a Radiocommunications mobiles. | |
650 | 7 | |a Mobile communication systems |2 fast | |
650 | 7 | |a Optical communications |x Technological innovations |2 fast | |
650 | 7 | |a Photonics |2 fast | |
653 | |a Technology, Engineering, Agriculture | ||
653 | |a Technologie, Ingenieurswissenschaft, Landwirtschaft | ||
653 | |a Technologie, ingénierie et agriculture | ||
653 | |a Electronics & communications engineering | ||
653 | |a Elektronik, Nachrichtentechnik | ||
653 | |a Ingénierie électronique et technologie des communications | ||
653 | |a Communications engineering / telecommunications | ||
653 | |a Nachrichtententechnik, Telekommunikation | ||
653 | |a Technologie des communications / télécommunications | ||
653 | |a Radio technology | ||
653 | |a Funktechnik | ||
653 | |a Technologie de la radio | ||
653 | |a Other technologies & applied sciences | ||
653 | |a Andere Technologien und verwandte Wissenschaften | ||
653 | |a Autres technologies et sciences appliquées | ||
653 | |a Applied optics | ||
653 | |a Angewandte Optik | ||
653 | |a Optique appliquée | ||
653 | |a Laser technology & holography | ||
653 | |a Lasertechnik und Holographie | ||
653 | |a Technologie laser et holographie | ||
700 | 1 | |a D'Errico, Antonio |c (Senior researcher), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjKrdcfWPcqMG3xtmCBXkC |0 http://id.loc.gov/authorities/names/nb2019021715 | |
758 | |i has work: |a Photonic applications for radio systems and networks (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGrhpTMHxq8v4Crw46XKV3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 1630816655 |z 9781630816650 |w (OCoLC)1105150826 |
830 | 0 | |a Artech House applied photonics series. |0 http://id.loc.gov/authorities/names/no2008135465 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2321911 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH37074557 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5988153 | ||
938 | |a EBSCOhost |b EBSC |n 2321911 | ||
938 | |a IEEE |b IEEE |n 9098792 | ||
938 | |a YBP Library Services |b YANK |n 300984708 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1124944867 |
---|---|
_version_ | 1816882503781187584 |
adam_text | |
any_adam_object | |
author | Cavaliere, Fabio D'Errico, Antonio (Senior researcher) |
author_GND | http://id.loc.gov/authorities/names/nb2019021715 |
author_facet | Cavaliere, Fabio D'Errico, Antonio (Senior researcher) |
author_role | aut aut |
author_sort | Cavaliere, Fabio |
author_variant | f c fc a d ad |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK5103 |
callnumber-raw | TK5103.59 .C38 2019eb |
callnumber-search | TK5103.59 .C38 2019eb |
callnumber-sort | TK 45103.59 C38 42019EB |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Intro; Photonic Applications for Radio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth 2.3.4 Time Division Duplex 5G Systems; 2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul; 3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 4.3.4 Error Vector Magnitude; 4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks; 5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network |
ctrlnum | (OCoLC)1124944867 |
dewey-full | 621.382/7 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382/7 |
dewey-search | 621.382/7 |
dewey-sort | 3621.382 17 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08823cam a2200913 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1124944867</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">191001s2019 maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">STF</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">STF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">YDXIT</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">CUV</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">BWN</subfield><subfield code="d">K6U</subfield><subfield code="d">IEEEE</subfield><subfield code="d">CNNOR</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1129779134</subfield><subfield code="a">1144896169</subfield><subfield code="a">1165770687</subfield><subfield code="a">1241802120</subfield><subfield code="a">1258912033</subfield><subfield code="a">1262669042</subfield><subfield code="a">1276821509</subfield><subfield code="a">1276929734</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781630816667</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1630816663</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781630816650</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1630816655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1124944867</subfield><subfield code="z">(OCoLC)1129779134</subfield><subfield code="z">(OCoLC)1144896169</subfield><subfield code="z">(OCoLC)1165770687</subfield><subfield code="z">(OCoLC)1241802120</subfield><subfield code="z">(OCoLC)1258912033</subfield><subfield code="z">(OCoLC)1262669042</subfield><subfield code="z">(OCoLC)1276821509</subfield><subfield code="z">(OCoLC)1276929734</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK5103.59</subfield><subfield code="b">.C38 2019eb</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.382/7</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cavaliere, Fabio.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photonic applications for radio systems and networks /</subfield><subfield code="c">Fabio Cavaliere, Antonio D'Errico</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Artech House applied photonics series</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from PDF title page (viewed on March 09, 2020)</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro; Photonic Applications for Radio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3.4 Time Division Duplex 5G Systems; 2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7.2 Definition of Fronthaul, Midhaul, and Backhaul; 3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.4 Error Vector Magnitude; 4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks; 5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to the transmission modeling techniques for the design of a radio access optical network. The main linear and non-linear propagation effects in optical fiber are covered. The book introduces mobile network designers to the optical technologies used in digital and analog radio access networks, such as optical amplifiers and transmitters, and describes different deployment scenarios, including point-to-point fiber systems, wavelength-division multiplexing systems, and passive optical networks. New integrated photonic technologies for optical switching are also discussed. The book illustrates the principles of optical beamforming and explains how optical technologies can be used to provide accurate phase and frequency control of antenna elements. The new architecture of the optical transport network, driven by the new, challenging requirements that 5G poses in terms of high capacity, high energy efficiency, low latency and low cost is discussed. The use of photonic devices to perform tasks as radio-frequency generation and beamforming, with improved accuracy and cost compared to traditional electronic systems, especially when moving to mm-waves is also explored. Readers also learn the replacement of electric interconnect systems with higher speed and more energy efficient optical lines to perform more effectively computationally demanding baseband processing in 5G. All presented propagation models can be implemented in a spreadsheet, in order to provide the designer with simple rules of thumbs for network planning.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Optical communications</subfield><subfield code="x">Technological innovations.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Photonics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85101397</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mobile communication systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086371</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Télécommunications optiques</subfield><subfield code="x">Innovations.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Photonique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Radiocommunications mobiles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mobile communication systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optical communications</subfield><subfield code="x">Technological innovations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photonics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technology, Engineering, Agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technologie, Ingenieurswissenschaft, Landwirtschaft</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technologie, ingénierie et agriculture</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronics & communications engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektronik, Nachrichtentechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ingénierie électronique et technologie des communications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Communications engineering / telecommunications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nachrichtententechnik, Telekommunikation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technologie des communications / télécommunications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Radio technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Funktechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technologie de la radio</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Other technologies & applied sciences</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Andere Technologien und verwandte Wissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Autres technologies et sciences appliquées</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Applied optics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Angewandte Optik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optique appliquée</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Laser technology & holography</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lasertechnik und Holographie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technologie laser et holographie</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Errico, Antonio</subfield><subfield code="c">(Senior researcher),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKrdcfWPcqMG3xtmCBXkC</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2019021715</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Photonic applications for radio systems and networks (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGrhpTMHxq8v4Crw46XKV3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1630816655</subfield><subfield code="z">9781630816650</subfield><subfield code="w">(OCoLC)1105150826</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Artech House applied photonics series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2008135465</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2321911</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH37074557</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5988153</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2321911</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">IEEE</subfield><subfield code="b">IEEE</subfield><subfield code="n">9098792</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">300984708</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1124944867 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:39Z |
institution | BVB |
isbn | 9781630816667 1630816663 |
language | English |
oclc_num | 1124944867 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Artech House, |
record_format | marc |
series | Artech House applied photonics series. |
series2 | Artech House applied photonics series |
spelling | Cavaliere, Fabio., author. Photonic applications for radio systems and networks / Fabio Cavaliere, Antonio D'Errico Boston : Artech House, [2019] 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rdaft Artech House applied photonics series Online resource; title from PDF title page (viewed on March 09, 2020) Includes bibliographical references and index Intro; Photonic Applications for Radio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth 2.3.4 Time Division Duplex 5G Systems; 2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul; 3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 4.3.4 Error Vector Magnitude; 4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks; 5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network This hands-on, practical new resource provides optical network designers with basic but necessary information about radio systems air interface and radio access network architecture, protocols, and interfaces, using 5G use cases as relevant example. The book introduces mobile network designers to the transmission modeling techniques for the design of a radio access optical network. The main linear and non-linear propagation effects in optical fiber are covered. The book introduces mobile network designers to the optical technologies used in digital and analog radio access networks, such as optical amplifiers and transmitters, and describes different deployment scenarios, including point-to-point fiber systems, wavelength-division multiplexing systems, and passive optical networks. New integrated photonic technologies for optical switching are also discussed. The book illustrates the principles of optical beamforming and explains how optical technologies can be used to provide accurate phase and frequency control of antenna elements. The new architecture of the optical transport network, driven by the new, challenging requirements that 5G poses in terms of high capacity, high energy efficiency, low latency and low cost is discussed. The use of photonic devices to perform tasks as radio-frequency generation and beamforming, with improved accuracy and cost compared to traditional electronic systems, especially when moving to mm-waves is also explored. Readers also learn the replacement of electric interconnect systems with higher speed and more energy efficient optical lines to perform more effectively computationally demanding baseband processing in 5G. All presented propagation models can be implemented in a spreadsheet, in order to provide the designer with simple rules of thumbs for network planning. Optical communications Technological innovations. Photonics. http://id.loc.gov/authorities/subjects/sh85101397 Mobile communication systems. http://id.loc.gov/authorities/subjects/sh85086371 Télécommunications optiques Innovations. Photonique. Radiocommunications mobiles. Mobile communication systems fast Optical communications Technological innovations fast Photonics fast Technology, Engineering, Agriculture Technologie, Ingenieurswissenschaft, Landwirtschaft Technologie, ingénierie et agriculture Electronics & communications engineering Elektronik, Nachrichtentechnik Ingénierie électronique et technologie des communications Communications engineering / telecommunications Nachrichtententechnik, Telekommunikation Technologie des communications / télécommunications Radio technology Funktechnik Technologie de la radio Other technologies & applied sciences Andere Technologien und verwandte Wissenschaften Autres technologies et sciences appliquées Applied optics Angewandte Optik Optique appliquée Laser technology & holography Lasertechnik und Holographie Technologie laser et holographie D'Errico, Antonio (Senior researcher), author. https://id.oclc.org/worldcat/entity/E39PCjKrdcfWPcqMG3xtmCBXkC http://id.loc.gov/authorities/names/nb2019021715 has work: Photonic applications for radio systems and networks (Text) https://id.oclc.org/worldcat/entity/E39PCGrhpTMHxq8v4Crw46XKV3 https://id.oclc.org/worldcat/ontology/hasWork Print version: 1630816655 9781630816650 (OCoLC)1105150826 Artech House applied photonics series. http://id.loc.gov/authorities/names/no2008135465 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2321911 Volltext |
spellingShingle | Cavaliere, Fabio D'Errico, Antonio (Senior researcher) Photonic applications for radio systems and networks / Artech House applied photonics series. Intro; Photonic Applications for Radio Systems and Networks; Contents; Chapter 1 Introduction; Chapter 2 Radio Systems Physical Layer; 2.1 Introduction; 2.2 Physical Layer of 4G Radio Systems; 2.2.1 Orthogonal Frequency Division Multiplexing; 2.2.2 Orthogonal Frequency Division Multiplexing Access; 2.2.3 LTE Frame Structure; 2.2.4 LTE Systems Bandwidth; 2.2.5 TDD Frame Structure; 2.2.6 LTE Physical Layer Parameters; 2.3 Physical Layer of 5G Radio Systems; 2.3.1 Modulation Schemes; 2.3.2 5G Numerology and Frame Structure; 2.3.3 5G Resource Grid and Bandwidth 2.3.4 Time Division Duplex 5G Systems; 2.3.5 5G Physical Layer Parameters; 2.4 Multiple Antenna Systems and Beamforming; 2.5 Signal Processing Chain in 5G; 2.6 Conclusions; References; Chapter 3 Radio Access Network Architecture; 3.1 Introduction; 3.2 5G Use Cases and Requirements; 3.3 The Radio Protocol Stack; 3.4 The HARQ Protocol; 3.5 Latency Budget in Mobile Communication Systems; 3.6 RAN Functional Split; 3.6.1 Radio Split Architecture; 3.6.2 Functional Split Options; 3.7 The 5G Transport Network Architecture; 3.7.1 RAN Logical Interfaces 3.7.2 Definition of Fronthaul, Midhaul, and Backhaul; 3.7.3 Mapping of Functional Split Options onto the Transport Network; 3.8 RAN Deployment Scenarios; 3.9 Network Slicing; 3.10 Bit Rate and Latency with Different Functional Split Options; 3.10.1 Bit Rate Dependency on the Split Option; 3.10.2 Bit Rate Calculation; 3.10.3 Latency Calculation; 3.11 Summary; References; Chapter 4 Optical Transmission Modeling in Digital RANs; 4.1 Introduction; 4.2 Fiber Attenuation; 4.3 Performance Metrics in Optical Communication Systems; 4.3.1 Bit Error Rate; 4.3.2 Q Factor; 4.3.3 Optical Modulation Amplitude 4.3.4 Error Vector Magnitude; 4.3.5 Optical Signal-to-Noise Ratio; 4.3.6 Using Different Penalty Definitions; 4.4 Optical Receiver Model; 4.5 Fiber Propagation Penalties; 4.5.1 Chromatic Dispersion; 4.5.2 Polarization Mode Dispersion; 4.5.3 Chromatic and Polarization Mode Dispersion Tolerance of Direct Detection Modulation Formats; 4.5.4 Self-Phase Modulation; 4.5.5 Cross-Phase Modulation; 4.5.6 Four-Wave Mixing; 4.6 Stimulated Raman Scattering; 4.6.1 Stimulated Brillouin Scattering; 4.7 Rayleigh Backscattering; 4.8 Summary; References Chapter 5 Optical Systems and Technologies for Digital Radio Access Networks; 5.1 Introduction; 5.2 Point-to-Point Fiber Systems; 5.2.1 Optical Modules for Point-to-Point Links; 5.2.2 Modulation Formats in Point-to-Point Links; 5.3 Dense WDM Systems; 5.3.1 Optical Amplifiers; 5.3.2 Statistical Design of DWDM Links; 5.3.3 Wavelength Dependent Losses and Gains; 5.3.4 Modulation Formats in a DWDM RAN; 5.3.5 Further Considerations on DWDM RANs; 5.4 Mobile Transport over Fixed-Access Networks; 5.4.1 Passive Optical Networks; 5.4.2 Mobile Transport over PON; 5.4.3 Dimensioning of a Backhaul Network Optical communications Technological innovations. Photonics. http://id.loc.gov/authorities/subjects/sh85101397 Mobile communication systems. http://id.loc.gov/authorities/subjects/sh85086371 Télécommunications optiques Innovations. Photonique. Radiocommunications mobiles. Mobile communication systems fast Optical communications Technological innovations fast Photonics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85101397 http://id.loc.gov/authorities/subjects/sh85086371 |
title | Photonic applications for radio systems and networks / |
title_auth | Photonic applications for radio systems and networks / |
title_exact_search | Photonic applications for radio systems and networks / |
title_full | Photonic applications for radio systems and networks / Fabio Cavaliere, Antonio D'Errico |
title_fullStr | Photonic applications for radio systems and networks / Fabio Cavaliere, Antonio D'Errico |
title_full_unstemmed | Photonic applications for radio systems and networks / Fabio Cavaliere, Antonio D'Errico |
title_short | Photonic applications for radio systems and networks / |
title_sort | photonic applications for radio systems and networks |
topic | Optical communications Technological innovations. Photonics. http://id.loc.gov/authorities/subjects/sh85101397 Mobile communication systems. http://id.loc.gov/authorities/subjects/sh85086371 Télécommunications optiques Innovations. Photonique. Radiocommunications mobiles. Mobile communication systems fast Optical communications Technological innovations fast Photonics fast |
topic_facet | Optical communications Technological innovations. Photonics. Mobile communication systems. Télécommunications optiques Innovations. Photonique. Radiocommunications mobiles. Mobile communication systems Optical communications Technological innovations Photonics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2321911 |
work_keys_str_mv | AT cavalierefabio photonicapplicationsforradiosystemsandnetworks AT derricoantonio photonicapplicationsforradiosystemsandnetworks |