Proceedings of the Tenth Annual Conference on Computational Learning Theory: July 6th - 9th, 1997, Nashville, Tennessee
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
ACM
1997
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VII, 338 S. graph. Darst. |
ISBN: | 0897918916 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV011552333 | ||
003 | DE-604 | ||
005 | 19980209 | ||
007 | t | ||
008 | 970929s1997 d||| |||| 10||| eng d | ||
020 | |a 0897918916 |9 0-89791-891-6 | ||
035 | |a (OCoLC)37682932 | ||
035 | |a (DE-599)BVBBV011552333 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-91G | ||
050 | 0 | |a Q325.7 | |
084 | |a DAT 708f |2 stub | ||
111 | 2 | |a Conference on Computational Learning Theory |n 10 |d 1997 |c Nashville, Tenn. |j Verfasser |0 (DE-588)1701819-5 |4 aut | |
245 | 1 | 0 | |a Proceedings of the Tenth Annual Conference on Computational Learning Theory |b July 6th - 9th, 1997, Nashville, Tennessee |
264 | 1 | |a New York, NY |b ACM |c 1997 | |
300 | |a VII, 338 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Artificial intelligence |v Congresses | |
650 | 4 | |a Computational learning theory |v Congresses | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 1997 |z Nashville Tenn. |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007778061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-007778061 |
Datensatz im Suchindex
_version_ | 1804126076951068672 |
---|---|
adam_text | Contents
Foreword
.....................................................................................................
vii
Sunday, July
6,1997
Invited Talk I
Information Theory in Probability, Statistics, Learning, and Neural Nets
.............................................. 1
Andrew Barron
Session
1
A PAC
Analysis of a Bayesian Estimator
.......................................................................... 2
John Shawe-Taylor, Robert
С
Williamson
Learning Logic Programs by Using the Product Homomorphism Method
............................................ 10
Tamás Horváth,
Robert
H.
Sloan,
György
Turan
Session
2
On-line Evaluation and Prediction Using Linear Functions
......................................................... 21
Philip M. Long
Derandomizing Stochastic Prediction Strategies
...................................................................32
V.Vovk
On-line Learning and the Metrical Task System Problem
...........................................................45
Avrim Blum, Carl Burch
Session
3
On the Complexity of Learning for a Spiking Neuron
.............................................................. 54
Wolfgang Maass, Michael
Schmitt
Learning Probabilistically Consistent Linear Threshold Functions
...................................................62
Tom Bylander
PAC
Adaptive Control of Linear Systems
.........................................................................72
Claude-Nicolas Fiechter
Session
4
FINite Learning Capabilities and Their Limits
.................................................................... 81
Robert Daley,
Bala
Kalyanasundaram
Asymmetric Team Learning
.....................................................................................90
Kalvis
Apsïtis,
Rusinš
Freivalds,
Carl
H.
Smith
Generalized Notions of Mind Change Complexity
.................................................................96
Arun Sharma, Frank
Stephan,
Yuri Ventsov
Monday, July
7,1997
Invited Talk
Π
A Brief Look at Some Machine Learning Problems in Genomics
...................................................109
David
Haussler
Session
5
An Efficient Extension to Mixture Techniques for Prediction and Decision Trees
.....................................114
Fernando
Pereira,
Yoram Singer
Performance Bounds for Nonlinear Time Series Prediction
........................................................ 122
Ron Meir
Session
6
Computational Sample Complexity
............................................................................. 130
Scott Decatur, Oded
Goldreich, Dana
Ron
Dense Shattering and Teaching Dimensions for Differentiable Families
.............................................143
A. Kowalczyk
Algorithmic Stability and Sanity-check Bounds for Leave-one-out Cross-validation
.................................. 152
Michael Kearns, Dana Ron
Session
7
Analysis of Two Gradient-based Algorithms for On-line Regression
................................................163
Nicolo Cesa-Bianchi
General Convergence Results for Linear Discriminant Updates
.................................................... 171
Adam J. Grove, Nick Littlestone, Dale Schuurmans
The Binary Exponentiated Gradient Algorithm for Learning Linear Functions
....................................... 184
Tom Bylander
Session
8
A Dichotomy Theorem for Learning Quantified Boolean Formulas
.................................................193
Victor Dalmau
Learning with Maximum-entropy Distributions
.................................................................. 201
Yishay Mansour, Mariano Schain
Generating All Maximal Independent Sets of Bounded-degree Hypergraphs
.........................................211
Nina Mishra, Leonard Pitt
Tuesday, July
8,1997
Session
9
Some Label Efficient Learning Results
..........................................................................218
David
Helmbold,
Sandra Panizza
Learning from Examples with Unspecified Attribute Values
.......................................................231
Sally A. Goldman, Stephen S.
Kwek,
Stephen D. Scott
Learning Distributions from Random Walks
..................................................................243
Funda
Ergiin, S. Ravi Kumar, Ronitt
Rubinfeld
Distributed Cooperative Bayesian Learning Strategies
............................. ..............250
Kenji Yamanishi
iv
Session 10
Resource
Bounded Next Value and Explanatory Identification: Learning Automata, Patterns and Polynomials On-line
... 263
Susanne Kaufmann,
Frank
Stephan
Inferring Answers to Queries
...................................................................................275
William I. Gasarch, Andrew C. Y. Lee
Teachers, Learners and Black Boxes
............................................................................ 285
Dana Angluin, Martins Krikis
Wednesday, July
9,1997
Joint Sessions with ICML
Learning Markov Chains with Variable Memory Length from Noisy Output
.........................................298
Dana Angluin,
Miklós Csűrös
Universal Portfolios with and without Transaction Costs
.......................................................... 309
Avrim Blum, Adam Kalai
Estimation of Time-varying Parameters in Statistical Models: An Optimization Approach
............................ 314
Dimitris Bertsimas, David Gamarnik, John
N.
Tsitsiklis
Agnostic Learning of Geometric Patterns
........................................................................325
Sally A. Goldman, Stephen S.
Kwek,
Stephen D. Scott
Tutorial Abstracts
.............................................................................................334
Author Index
.................................................................................................338
|
any_adam_object | 1 |
author_corporate | Conference on Computational Learning Theory Nashville, Tenn |
author_corporate_role | aut |
author_facet | Conference on Computational Learning Theory Nashville, Tenn |
author_sort | Conference on Computational Learning Theory Nashville, Tenn |
building | Verbundindex |
bvnumber | BV011552333 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.7 |
callnumber-search | Q325.7 |
callnumber-sort | Q 3325.7 |
callnumber-subject | Q - General Science |
classification_tum | DAT 708f |
ctrlnum | (OCoLC)37682932 (DE-599)BVBBV011552333 |
discipline | Informatik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01548nam a2200373 c 4500</leader><controlfield tag="001">BV011552333</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19980209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">970929s1997 d||| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0897918916</subfield><subfield code="9">0-89791-891-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)37682932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011552333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Conference on Computational Learning Theory</subfield><subfield code="n">10</subfield><subfield code="d">1997</subfield><subfield code="c">Nashville, Tenn.</subfield><subfield code="j">Verfasser</subfield><subfield code="0">(DE-588)1701819-5</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proceedings of the Tenth Annual Conference on Computational Learning Theory</subfield><subfield code="b">July 6th - 9th, 1997, Nashville, Tennessee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">ACM</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VII, 338 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational learning theory</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1997</subfield><subfield code="z">Nashville Tenn.</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007778061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007778061</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 1997 Nashville Tenn. gnd-content |
genre_facet | Konferenzschrift 1997 Nashville Tenn. |
id | DE-604.BV011552333 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:11:43Z |
institution | BVB |
institution_GND | (DE-588)1701819-5 |
isbn | 0897918916 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007778061 |
oclc_num | 37682932 |
open_access_boolean | |
owner | DE-20 DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-91G DE-BY-TUM |
physical | VII, 338 S. graph. Darst. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | ACM |
record_format | marc |
spelling | Conference on Computational Learning Theory 10 1997 Nashville, Tenn. Verfasser (DE-588)1701819-5 aut Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee New York, NY ACM 1997 VII, 338 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Künstliche Intelligenz Artificial intelligence Congresses Computational learning theory Congresses Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 1997 Nashville Tenn. gnd-content Maschinelles Lernen (DE-588)4193754-5 s DE-604 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007778061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee Künstliche Intelligenz Artificial intelligence Congresses Computational learning theory Congresses Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)1071861417 |
title | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee |
title_auth | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee |
title_exact_search | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee |
title_full | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee |
title_fullStr | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee |
title_full_unstemmed | Proceedings of the Tenth Annual Conference on Computational Learning Theory July 6th - 9th, 1997, Nashville, Tennessee |
title_short | Proceedings of the Tenth Annual Conference on Computational Learning Theory |
title_sort | proceedings of the tenth annual conference on computational learning theory july 6th 9th 1997 nashville tennessee |
title_sub | July 6th - 9th, 1997, Nashville, Tennessee |
topic | Künstliche Intelligenz Artificial intelligence Congresses Computational learning theory Congresses Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Künstliche Intelligenz Artificial intelligence Congresses Computational learning theory Congresses Maschinelles Lernen Konferenzschrift 1997 Nashville Tenn. |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007778061&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT conferenceoncomputationallearningtheorynashvilletenn proceedingsofthetenthannualconferenceoncomputationallearningtheoryjuly6th9th1997nashvilletennessee |