Multiscale methods for Fredholm integral equations:
The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2015
|
Schriftenreihe: | Cambridge monographs on applied and computational mathematics
28 |
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 Volltext |
Zusammenfassung: | The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates |
Beschreibung: | Title from publisher's bibliographic system (viewed on 05 Oct 2015) |
Beschreibung: | 1 online resource (xiii, 536 pages) |
ISBN: | 9781316216637 |
DOI: | 10.1017/CBO9781316216637 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV043940207 | ||
003 | DE-604 | ||
005 | 20171103 | ||
007 | cr|uuu---uuuuu | ||
008 | 161206s2015 |||| o||u| ||||||eng d | ||
020 | |a 9781316216637 |c Online |9 978-1-316-21663-7 | ||
024 | 7 | |a 10.1017/CBO9781316216637 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781316216637 | ||
035 | |a (OCoLC)930541103 | ||
035 | |a (DE-599)BVBBV043940207 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 | ||
082 | 0 | |a 515/.45 |2 23 | |
084 | |a SK 640 |0 (DE-625)143250: |2 rvk | ||
100 | 1 | |a Chen, Zhongying |d 1946- |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multiscale methods for Fredholm integral equations |c Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 online resource (xiii, 536 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge monographs on applied and computational mathematics |v 28 | |
500 | |a Title from publisher's bibliographic system (viewed on 05 Oct 2015) | ||
520 | |a The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates | ||
650 | 4 | |a Fredholm equations | |
650 | 4 | |a Integral equations | |
650 | 0 | 7 | |a Mehrskalenmodell |0 (DE-588)7600619-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fredholm-Integralgleichung |0 (DE-588)4155261-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fredholm-Integralgleichung |0 (DE-588)4155261-1 |D s |
689 | 0 | 1 | |a Mehrskalenmodell |0 (DE-588)7600619-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Micchelli, Charles A. |d 1924- |e Sonstige |0 (DE-588)1120439086 |4 oth | |
700 | 1 | |a Xu, Yuesheng |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-1-107-10347-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/CBO9781316216637 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-029349177 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1017/CBO9781316216637 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/CBO9781316216637 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804176880436248576 |
---|---|
any_adam_object | |
author | Chen, Zhongying 1946- |
author_GND | (DE-588)1120439086 |
author_facet | Chen, Zhongying 1946- |
author_role | aut |
author_sort | Chen, Zhongying 1946- |
author_variant | z c zc |
building | Verbundindex |
bvnumber | BV043940207 |
classification_rvk | SK 640 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781316216637 (OCoLC)930541103 (DE-599)BVBBV043940207 |
dewey-full | 515/.45 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.45 |
dewey-search | 515/.45 |
dewey-sort | 3515 245 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/CBO9781316216637 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03118nmm a2200517zcb4500</leader><controlfield tag="001">BV043940207</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171103 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">161206s2015 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316216637</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-316-21663-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/CBO9781316216637</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781316216637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)930541103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043940207</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.45</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 640</subfield><subfield code="0">(DE-625)143250:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Zhongying</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale methods for Fredholm integral equations</subfield><subfield code="c">Zhongying Chen, Charles A. Micchelli, Yuesheng Xu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 536 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge monographs on applied and computational mathematics</subfield><subfield code="v">28</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 05 Oct 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fredholm equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrskalenmodell</subfield><subfield code="0">(DE-588)7600619-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fredholm-Integralgleichung</subfield><subfield code="0">(DE-588)4155261-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fredholm-Integralgleichung</subfield><subfield code="0">(DE-588)4155261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrskalenmodell</subfield><subfield code="0">(DE-588)7600619-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micchelli, Charles A.</subfield><subfield code="d">1924-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1120439086</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Yuesheng</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-107-10347-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/CBO9781316216637</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029349177</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316216637</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/CBO9781316216637</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043940207 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:39:13Z |
institution | BVB |
isbn | 9781316216637 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029349177 |
oclc_num | 930541103 |
open_access_boolean | |
owner | DE-12 DE-92 |
owner_facet | DE-12 DE-92 |
physical | 1 online resource (xiii, 536 pages) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge monographs on applied and computational mathematics |
spelling | Chen, Zhongying 1946- Verfasser aut Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu Cambridge Cambridge University Press 2015 1 online resource (xiii, 536 pages) txt rdacontent c rdamedia cr rdacarrier Cambridge monographs on applied and computational mathematics 28 Title from publisher's bibliographic system (viewed on 05 Oct 2015) The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates Fredholm equations Integral equations Mehrskalenmodell (DE-588)7600619-0 gnd rswk-swf Fredholm-Integralgleichung (DE-588)4155261-1 gnd rswk-swf Fredholm-Integralgleichung (DE-588)4155261-1 s Mehrskalenmodell (DE-588)7600619-0 s 1\p DE-604 Micchelli, Charles A. 1924- Sonstige (DE-588)1120439086 oth Xu, Yuesheng Sonstige oth Erscheint auch als Druckausgabe 978-1-107-10347-4 https://doi.org/10.1017/CBO9781316216637 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chen, Zhongying 1946- Multiscale methods for Fredholm integral equations Fredholm equations Integral equations Mehrskalenmodell (DE-588)7600619-0 gnd Fredholm-Integralgleichung (DE-588)4155261-1 gnd |
subject_GND | (DE-588)7600619-0 (DE-588)4155261-1 |
title | Multiscale methods for Fredholm integral equations |
title_auth | Multiscale methods for Fredholm integral equations |
title_exact_search | Multiscale methods for Fredholm integral equations |
title_full | Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
title_fullStr | Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
title_full_unstemmed | Multiscale methods for Fredholm integral equations Zhongying Chen, Charles A. Micchelli, Yuesheng Xu |
title_short | Multiscale methods for Fredholm integral equations |
title_sort | multiscale methods for fredholm integral equations |
topic | Fredholm equations Integral equations Mehrskalenmodell (DE-588)7600619-0 gnd Fredholm-Integralgleichung (DE-588)4155261-1 gnd |
topic_facet | Fredholm equations Integral equations Mehrskalenmodell Fredholm-Integralgleichung |
url | https://doi.org/10.1017/CBO9781316216637 |
work_keys_str_mv | AT chenzhongying multiscalemethodsforfredholmintegralequations AT micchellicharlesa multiscalemethodsforfredholmintegralequations AT xuyuesheng multiscalemethodsforfredholmintegralequations |