Complexity dichotomies for counting problems.: Volume 1, Boolean domain /
Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counti...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom :
Cambridge University Press,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics. |
Beschreibung: | 1 online resource : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781108523721 1108523722 9781108505840 1108505848 9781107062375 1107062373 9781107477063 1107477069 1107635608 9781107635609 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1006380913 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 171016s2017 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d N$T |d OCLCF |d UMI |d YDX |d CSAIL |d STF |d TOH |d COO |d VT2 |d CEF |d KSU |d U3W |d OTZ |d OCLCQ |d TKN |d OCLCQ |d UKAHL |d LUN |d K6U |d OCLCO |d OCLCQ |d OCLCO |d SFB |d OCLCQ |d S9M |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 1006609564 |a 1012108943 |a 1167420239 | ||
020 | |a 9781108523721 |q (electronic bk.) | ||
020 | |a 1108523722 |q (electronic bk.) | ||
020 | |a 9781108505840 | ||
020 | |a 1108505848 | ||
020 | |a 9781107062375 | ||
020 | |a 1107062373 | ||
020 | |a 9781107477063 | ||
020 | |a 1107477069 | ||
020 | |a 1107635608 | ||
020 | |a 9781107635609 | ||
020 | |z 9781107635609 |q (paperback) | ||
035 | |a (OCoLC)1006380913 |z (OCoLC)1006609564 |z (OCoLC)1012108943 |z (OCoLC)1167420239 | ||
037 | |a CL0500000915 |b Safari Books Online | ||
050 | 4 | |a QA267 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3/52 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Cai, Jin-yi, |d 1961- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJdh7bV3X3bYxmpXpGYtrq |0 http://id.loc.gov/authorities/names/n90603435 | |
245 | 1 | 0 | |a Complexity dichotomies for counting problems. |n Volume 1, |p Boolean domain / |c Jin-Yi Cai, Xi Chen. |
246 | 3 | 0 | |a Boolean domain |
264 | 1 | |a Cambridge, United Kingdom : |b Cambridge University Press, |c 2017. | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Vendor-supplied metadata. | |
520 | |a Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics. | ||
505 | 1 | |a Volume 1. Boolean domain | |
650 | 0 | |a Algebra, Boolean. |0 http://id.loc.gov/authorities/subjects/sh85003429 | |
650 | 0 | |a Computational complexity. |0 http://id.loc.gov/authorities/subjects/sh85029473 | |
650 | 0 | |a Combinatorial enumeration problems. |0 http://id.loc.gov/authorities/subjects/sh85028804 | |
650 | 0 | |a Homomorphisms (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85061771 | |
650 | 6 | |a Algèbre de Boole. | |
650 | 6 | |a Complexité de calcul (Informatique) | |
650 | 6 | |a Problèmes combinatoires d'énumération. | |
650 | 6 | |a Homomorphismes (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Complejidad computacional |2 embne | |
650 | 7 | |a Algebra, Boolean |2 fast | |
650 | 7 | |a Combinatorial enumeration problems |2 fast | |
650 | 7 | |a Computational complexity |2 fast | |
650 | 7 | |a Homomorphisms (Mathematics) |2 fast | |
700 | 1 | |a Chen, Xi |c (Computer science professor), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjyr3g7krjvxMg4j7T3jT3 |0 http://id.loc.gov/authorities/names/n2017024596 | |
758 | |i has work: |a Boolean domain Complexity dichotomies for counting problems Volume 1 (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFVFTtwgxKkW6t469yww83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Cai, Jin-Yi. |t Complexity dichotomies for counting problems. Volume 1, Boolean Domain. |d Cambridge, England : Cambridge University Press, 2017 |z 9781107062375 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578684 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34204004 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33730704 | ||
938 | |a EBSCOhost |b EBSC |n 1578684 | ||
938 | |a YBP Library Services |b YANK |n 14977530 | ||
938 | |a YBP Library Services |b YANK |n 14883684 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1006380913 |
---|---|
_version_ | 1816882402826387456 |
adam_text | |
any_adam_object | |
author | Cai, Jin-yi, 1961- Chen, Xi (Computer science professor) |
author_GND | http://id.loc.gov/authorities/names/n90603435 http://id.loc.gov/authorities/names/n2017024596 |
author_facet | Cai, Jin-yi, 1961- Chen, Xi (Computer science professor) |
author_role | aut aut |
author_sort | Cai, Jin-yi, 1961- |
author_variant | j y c jyc x c xc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA267 |
callnumber-raw | QA267 |
callnumber-search | QA267 |
callnumber-sort | QA 3267 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Volume 1. Boolean domain |
ctrlnum | (OCoLC)1006380913 |
dewey-full | 511.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/52 |
dewey-search | 511.3/52 |
dewey-sort | 3511.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04552cam a2200757 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1006380913</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||unuuu</controlfield><controlfield tag="008">171016s2017 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UMI</subfield><subfield code="d">YDX</subfield><subfield code="d">CSAIL</subfield><subfield code="d">STF</subfield><subfield code="d">TOH</subfield><subfield code="d">COO</subfield><subfield code="d">VT2</subfield><subfield code="d">CEF</subfield><subfield code="d">KSU</subfield><subfield code="d">U3W</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">LUN</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1006609564</subfield><subfield code="a">1012108943</subfield><subfield code="a">1167420239</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108523721</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108523722</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108505840</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108505848</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107062375</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107062373</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107477063</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107477069</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107635608</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107635609</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107635609</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1006380913</subfield><subfield code="z">(OCoLC)1006609564</subfield><subfield code="z">(OCoLC)1012108943</subfield><subfield code="z">(OCoLC)1167420239</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000915</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA267</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/52</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Jin-yi,</subfield><subfield code="d">1961-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdh7bV3X3bYxmpXpGYtrq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90603435</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complexity dichotomies for counting problems.</subfield><subfield code="n">Volume 1,</subfield><subfield code="p">Boolean domain /</subfield><subfield code="c">Jin-Yi Cai, Xi Chen.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Boolean domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Vendor-supplied metadata.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics.</subfield></datafield><datafield tag="505" ind1="1" ind2=" "><subfield code="a">Volume 1. Boolean domain</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebra, Boolean.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003429</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computational complexity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029473</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial enumeration problems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028804</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homomorphisms (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061771</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre de Boole.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Complexité de calcul (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes combinatoires d'énumération.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homomorphismes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complejidad computacional</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra, Boolean</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial enumeration problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computational complexity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homomorphisms (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xi</subfield><subfield code="c">(Computer science professor),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyr3g7krjvxMg4j7T3jT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2017024596</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Boolean domain Complexity dichotomies for counting problems Volume 1 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFVFTtwgxKkW6t469yww83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cai, Jin-Yi.</subfield><subfield code="t">Complexity dichotomies for counting problems. Volume 1, Boolean Domain.</subfield><subfield code="d">Cambridge, England : Cambridge University Press, 2017</subfield><subfield code="z">9781107062375</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578684</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34204004</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33730704</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1578684</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14977530</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">14883684</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1006380913 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:28:03Z |
institution | BVB |
isbn | 9781108523721 1108523722 9781108505840 1108505848 9781107062375 1107062373 9781107477063 1107477069 1107635608 9781107635609 |
language | English |
oclc_num | 1006380913 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Cai, Jin-yi, 1961- author. https://id.oclc.org/worldcat/entity/E39PBJdh7bV3X3bYxmpXpGYtrq http://id.loc.gov/authorities/names/n90603435 Complexity dichotomies for counting problems. Volume 1, Boolean domain / Jin-Yi Cai, Xi Chen. Boolean domain Cambridge, United Kingdom : Cambridge University Press, 2017. 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Vendor-supplied metadata. Complexity theory aims to understand and classify computational problems, especially decision problems, according to their inherent complexity. This book uses new techniques to expand the theory for use with counting problems. The authors present dichotomy classifications for broad classes of counting problems in the realm of P and NP. Classifications are proved for partition functions of spin systems, graph homomorphisms, constraint satisfaction problems, and Holant problems. The book assumes minimal prior knowledge of computational complexity theory, developing proof techniques as needed and gradually increasing the generality and abstraction of the theory. This volume presents the theory on the Boolean domain, and includes a thorough presentation of holographic algorithms, culminating in classifications of computational problems studied in exactly solvable models from statistical mechanics. Volume 1. Boolean domain Algebra, Boolean. http://id.loc.gov/authorities/subjects/sh85003429 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Combinatorial enumeration problems. http://id.loc.gov/authorities/subjects/sh85028804 Homomorphisms (Mathematics) http://id.loc.gov/authorities/subjects/sh85061771 Algèbre de Boole. Complexité de calcul (Informatique) Problèmes combinatoires d'énumération. Homomorphismes (Mathématiques) MATHEMATICS General. bisacsh Complejidad computacional embne Algebra, Boolean fast Combinatorial enumeration problems fast Computational complexity fast Homomorphisms (Mathematics) fast Chen, Xi (Computer science professor), author. https://id.oclc.org/worldcat/entity/E39PCjyr3g7krjvxMg4j7T3jT3 http://id.loc.gov/authorities/names/n2017024596 has work: Boolean domain Complexity dichotomies for counting problems Volume 1 (Text) https://id.oclc.org/worldcat/entity/E39PCFVFTtwgxKkW6t469yww83 https://id.oclc.org/worldcat/ontology/hasWork Print version: Cai, Jin-Yi. Complexity dichotomies for counting problems. Volume 1, Boolean Domain. Cambridge, England : Cambridge University Press, 2017 9781107062375 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578684 Volltext |
spellingShingle | Cai, Jin-yi, 1961- Chen, Xi (Computer science professor) Complexity dichotomies for counting problems. Volume 1. Boolean domain Algebra, Boolean. http://id.loc.gov/authorities/subjects/sh85003429 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Combinatorial enumeration problems. http://id.loc.gov/authorities/subjects/sh85028804 Homomorphisms (Mathematics) http://id.loc.gov/authorities/subjects/sh85061771 Algèbre de Boole. Complexité de calcul (Informatique) Problèmes combinatoires d'énumération. Homomorphismes (Mathématiques) MATHEMATICS General. bisacsh Complejidad computacional embne Algebra, Boolean fast Combinatorial enumeration problems fast Computational complexity fast Homomorphisms (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85003429 http://id.loc.gov/authorities/subjects/sh85029473 http://id.loc.gov/authorities/subjects/sh85028804 http://id.loc.gov/authorities/subjects/sh85061771 |
title | Complexity dichotomies for counting problems. |
title_alt | Boolean domain |
title_auth | Complexity dichotomies for counting problems. |
title_exact_search | Complexity dichotomies for counting problems. |
title_full | Complexity dichotomies for counting problems. Volume 1, Boolean domain / Jin-Yi Cai, Xi Chen. |
title_fullStr | Complexity dichotomies for counting problems. Volume 1, Boolean domain / Jin-Yi Cai, Xi Chen. |
title_full_unstemmed | Complexity dichotomies for counting problems. Volume 1, Boolean domain / Jin-Yi Cai, Xi Chen. |
title_short | Complexity dichotomies for counting problems. |
title_sort | complexity dichotomies for counting problems boolean domain |
topic | Algebra, Boolean. http://id.loc.gov/authorities/subjects/sh85003429 Computational complexity. http://id.loc.gov/authorities/subjects/sh85029473 Combinatorial enumeration problems. http://id.loc.gov/authorities/subjects/sh85028804 Homomorphisms (Mathematics) http://id.loc.gov/authorities/subjects/sh85061771 Algèbre de Boole. Complexité de calcul (Informatique) Problèmes combinatoires d'énumération. Homomorphismes (Mathématiques) MATHEMATICS General. bisacsh Complejidad computacional embne Algebra, Boolean fast Combinatorial enumeration problems fast Computational complexity fast Homomorphisms (Mathematics) fast |
topic_facet | Algebra, Boolean. Computational complexity. Combinatorial enumeration problems. Homomorphisms (Mathematics) Algèbre de Boole. Complexité de calcul (Informatique) Problèmes combinatoires d'énumération. Homomorphismes (Mathématiques) MATHEMATICS General. Complejidad computacional Algebra, Boolean Combinatorial enumeration problems Computational complexity |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578684 |
work_keys_str_mv | AT caijinyi complexitydichotomiesforcountingproblemsvolume1 AT chenxi complexitydichotomiesforcountingproblemsvolume1 AT caijinyi booleandomain AT chenxi booleandomain |