Non-Noetherian Commutative Ring Theory:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | Mathematics and Its Applications
520 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Commutative Ring Theory emerged as a distinct field of research in mathematics only at the beginning of the twentieth century. It is rooted in nineteenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area |
Beschreibung: | 1 Online-Ressource (X, 480 p) |
ISBN: | 9781475731804 9781441948359 |
DOI: | 10.1007/978-1-4757-3180-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421436 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781475731804 |c Online |9 978-1-4757-3180-4 | ||
020 | |a 9781441948359 |c Print |9 978-1-4419-4835-9 | ||
024 | 7 | |a 10.1007/978-1-4757-3180-4 |2 doi | |
035 | |a (OCoLC)1165506899 | ||
035 | |a (DE-599)BVBBV042421436 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.44 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chapman, Scott T. |4 edt | |
245 | 1 | 0 | |a Non-Noetherian Commutative Ring Theory |c edited by Scott T. Chapman, Sarah Glaz |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (X, 480 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 520 | |
500 | |a Commutative Ring Theory emerged as a distinct field of research in mathematics only at the beginning of the twentieth century. It is rooted in nineteenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebra | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kommutativer Ring |0 (DE-588)4164825-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ringtheorie |0 (DE-588)4126571-3 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Ringtheorie |0 (DE-588)4126571-3 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Kommutativer Ring |0 (DE-588)4164825-0 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Glaz, Sarah |4 edt | |
830 | 0 | |a Mathematics and Its Applications |v 520 |w (DE-604)BV008163334 |9 520 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3180-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856853 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094486884352 |
---|---|
any_adam_object | |
author2 | Chapman, Scott T. Glaz, Sarah |
author2_role | edt edt |
author2_variant | s t c st stc s g sg |
author_facet | Chapman, Scott T. Glaz, Sarah |
building | Verbundindex |
bvnumber | BV042421436 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165506899 (DE-599)BVBBV042421436 |
dewey-full | 512.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.44 |
dewey-search | 512.44 |
dewey-sort | 3512.44 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3180-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03501nmm a2200601zcb4500</leader><controlfield tag="001">BV042421436</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475731804</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3180-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441948359</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-4835-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3180-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165506899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421436</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.44</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chapman, Scott T.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Noetherian Commutative Ring Theory</subfield><subfield code="c">edited by Scott T. Chapman, Sarah Glaz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 480 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">520</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Commutative Ring Theory emerged as a distinct field of research in mathematics only at the beginning of the twentieth century. It is rooted in nineteenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glaz, Sarah</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">520</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">520</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3180-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856853</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042421436 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475731804 9781441948359 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856853 |
oclc_num | 1165506899 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 480 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spelling | Chapman, Scott T. edt Non-Noetherian Commutative Ring Theory edited by Scott T. Chapman, Sarah Glaz Boston, MA Springer US 2000 1 Online-Ressource (X, 480 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 520 Commutative Ring Theory emerged as a distinct field of research in mathematics only at the beginning of the twentieth century. It is rooted in nineteenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area Mathematics Geometry, algebraic Algebra Field theory (Physics) Commutative Rings and Algebras Field Theory and Polynomials Algebraic Geometry Mathematik Kommutativer Ring (DE-588)4164825-0 gnd rswk-swf Ringtheorie (DE-588)4126571-3 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Ringtheorie (DE-588)4126571-3 s 2\p DE-604 Kommutativer Ring (DE-588)4164825-0 s 3\p DE-604 Glaz, Sarah edt Mathematics and Its Applications 520 (DE-604)BV008163334 520 https://doi.org/10.1007/978-1-4757-3180-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Non-Noetherian Commutative Ring Theory Mathematics and Its Applications Mathematics Geometry, algebraic Algebra Field theory (Physics) Commutative Rings and Algebras Field Theory and Polynomials Algebraic Geometry Mathematik Kommutativer Ring (DE-588)4164825-0 gnd Ringtheorie (DE-588)4126571-3 gnd |
subject_GND | (DE-588)4164825-0 (DE-588)4126571-3 (DE-588)4143413-4 |
title | Non-Noetherian Commutative Ring Theory |
title_auth | Non-Noetherian Commutative Ring Theory |
title_exact_search | Non-Noetherian Commutative Ring Theory |
title_full | Non-Noetherian Commutative Ring Theory edited by Scott T. Chapman, Sarah Glaz |
title_fullStr | Non-Noetherian Commutative Ring Theory edited by Scott T. Chapman, Sarah Glaz |
title_full_unstemmed | Non-Noetherian Commutative Ring Theory edited by Scott T. Chapman, Sarah Glaz |
title_short | Non-Noetherian Commutative Ring Theory |
title_sort | non noetherian commutative ring theory |
topic | Mathematics Geometry, algebraic Algebra Field theory (Physics) Commutative Rings and Algebras Field Theory and Polynomials Algebraic Geometry Mathematik Kommutativer Ring (DE-588)4164825-0 gnd Ringtheorie (DE-588)4126571-3 gnd |
topic_facet | Mathematics Geometry, algebraic Algebra Field theory (Physics) Commutative Rings and Algebras Field Theory and Polynomials Algebraic Geometry Mathematik Kommutativer Ring Ringtheorie Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4757-3180-4 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT chapmanscottt nonnoetheriancommutativeringtheory AT glazsarah nonnoetheriancommutativeringtheory |