q-Clan geometries in characteristic 2:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2007
|
Schriftenreihe: | Frontiers in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 159 - 164 |
Beschreibung: | XIV, 166 S. graph. Darst. |
ISBN: | 9783764385071 3764385073 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025497012 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 100417s2007 d||| |||| 00||| eng d | ||
016 | 7 | |a 984398600 |2 DE-101 | |
020 | |a 9783764385071 |9 978-3-7643-8507-1 | ||
020 | |a 3764385073 |9 3-7643-8507-3 | ||
035 | |a (OCoLC)255538462 | ||
035 | |a (DE-599)BVBBV025497012 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-188 | ||
082 | 0 | |a 516.11 |2 22/ger | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
100 | 1 | |a Cardinali, Ilaria |e Verfasser |4 aut | |
245 | 1 | 0 | |a q-Clan geometries in characteristic 2 |c Ilaria Cardinali ; Stanley E. Payne |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2007 | |
300 | |a XIV, 166 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Frontiers in mathematics | |
500 | |a Literaturverz. S. 159 - 164 | ||
650 | 0 | 7 | |a Verallgemeinertes Viereck |0 (DE-588)4187518-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verallgemeinertes Viereck |0 (DE-588)4187518-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Payne, Stanley E. |e Verfasser |4 aut | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020109049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020109049 |
Datensatz im Suchindex
_version_ | 1804142664233254912 |
---|---|
adam_text | CONTENTS
PRELIMINARIES IX
I
N
T
R
O
D
U
C
T
I
O
N.................................. I
X
FI
N
I
T
EGE
N
E
R
A
L
I
Z
E
DQU
A
D
R
A
N
G
L
E
S....................... X
PR
O
L
E
G
O
ME
N
A ................................. X
I
I
1
Q
-CLANS AND THEIR GEOMETRIES 1
1
.
1 AN
I
S
O
T
R
O
P
I
S
M .............................. 1
1.2
Q
-
CL
A
N
S ................................. 2
1
.
3 FL
O
C
K
SOFAQU
A
D
R
A
T
I
CCO
N
E ...................... 2
1.4 4-GONAL FAMILIES FROM
Q
-
CL
A
N
S .................... 4
1.5 OVALS IN
R
*
............................... 8
1
.
6 HE
R
DCO
V
E
RAN
DHE
R
DOFOV
A
L
S .................... 9
1.7 HERDS OF OVALS FROM
Q
-
CL
A
N
S...................... 1
1
1.8 GENERALIZED QUADRANGLES FROM
Q
-
CL
A
N
S................ 1
2
1.9 SPREADS OF PG(3,Q) ASSOCIATED WITH
Q
-
CL
A
N
S............. 1
4
2 THE FUNDAMENTAL THEOREM 19
2
.
1 GR
I
D
SAN
DAFFI
N
EPL
A
N
E
S ........................ 2
0
2.2 THE FUNDAMENTAL THEOREM . . . . . . . . . . . . . . . . . . . . . .
22
2.3
AUT
(
G
*
)................................. 2
6
2.4 EXTENSION TO 1
/
2-NORMALIZED
Q
-
CL
A
N
S................. 3
3
2.5 A CHARACTERIZATION OF THE
Q
-
CL
A
NKE
R
N
E
L............... 3
5
2
.
6 VE
R
YIMPO
R
T
A
N
TCO
N
C
E
P
T........................ 3
8
2.7 THE
Q
-CLAN
C
I
S
,
S
*
F
.......................... 3
8
2
.
8 TH
EI
N
D
U
C
E
DOV
A
LS
T
A
B
I
L
I
Z
E
R
S ..................... 4
1
2.9 ACTION OF
H
ON GENERATORS OF CONE
K
................ 4
4
3AU
T
(GQ(
C
C
C
))
47
3
.
1 GE
N
E
R
A
LRE
MA
R
K
S............................ 4
7
3.2 AN INVOLUTION OF
GQ
(
C
) ........................ 5
0
3.3 THE AUTOMORPHISM GROUP OF THE HERD COVER . . . . . . . . . . . . 51
3.4 THE MAGIC ACTION OF O*KEEFE AND PENTTILA . . . . . . . . . . . . . .
53
VI
CONTENTS
3
.
5 TH
EAU
T
O
MO
R
P
H
I
S
MGR
O
U
POFT
H
EHE
R
D................ 5
9
3.6 THE GROUPS
G
0
,
G
0
AND
*
G
0
...................... 6
1
3.7 THE SQUARE-BRACKET FUNCTION . . . . . . . . . . . . . . . . . . . .
. 62
3.8 A CYCLIC LINEAR COLLINEATION . . . . . . . . . . . . . . . . . . . .
. . 63
3
.
9 S
O
MEI
N
V
O
L
U
T
I
O
N
S............................ 6
5
3.10 SOME SEMI-LINEAR COLLINEATIONS . . . . . . . . . . . . . . . . . .
. . 66
4 THE CYCLIC
Q
-CLANS 73
4.1 THE UNIFIED CONSTRUCTION OF [COP03] . . . . . . . . . . . . . . . .
. 73
4.2 THE KNOWN CYCLIC
Q
-
CL
A
N
S ...................... 7
7
4.3
Q
-
CL
A
NFU
N
C
T
I
O
N
SVI
ATH
ESQ
U
A
R
EBR
A
C
K
E
T .............. 7
8
4.4 THE FLIP IS A COLLINEATION . . . . . . . . . . . . . . . . . . . . .
. . 80
4
.
5 TH
EMA
I
NIS
O
MO
R
P
H
I
S
MTH
E
O
R
E
M................... 8
1
4.6 THE UNIFIED CONSTRUCTION GIVES CYCLIC
Q
-
CL
A
N
S ........... 8
4
4.7 SOME SEMI-LINEAR COLLINEATIONS . . . . . . . . . . . . . . . . . . .
. 85
4
.
8 ANOV
A
LS
T
A
B
I
L
I
Z
E
R ........................... 8
8
5 APPLICATIONS TO THE KNOWN CYCLIC
Q
-CLANS 91
5.1 THE CLASSICAL EXAMPLES:
Q
=2
E
FOR
E
*
1............... 9
1
5.2 THE FTWKB EXAMPLES:
Q
=2
E
WITH
E
OD
D............. 9
5
5.3 THE SUBIACO EXAMPLES:
Q
=2
E
,
E
*
4................. 9
8
5.4 THE ADELAIDE EXAMPLES:
Q
=2
E
WITH
E
EV
E
N............. 1
0
0
6 THE SUBIACO OVAL STABILIZERS 101
6
.
1 AL
G
E
B
R
A
I
CPL
A
N
ECU
R
V
E
S ........................ 1
0
1
6.2 THE ACTION OF
G
0
ON THE
R
*
...................... 1
0
4
6.3 THE CASE
E
*
2(MO
D4) ........................ 1
0
6
6.4 THE CASE
E
*
1
0(MO
D20
)....................... 1
1
0
6.5 SUBIACO HYPEROVALS: THE VARIOUS CASES . . . . . . . . . . . . . . .
111
6.6
O
+
(1
,
1)
A
SANAL
G
E
B
R
A
I
CCU
R
V
E ..................... 1
1
2
6.7 THE CASE
E
*
0(MO
D4)........................ 1
1
6
6.8 THE CASE
E
OD
D ............................ 1
2
0
6.9 THE CASE
E
*
2(MO
D4) ........................ 1
2
2
6.10 SUMMARY OF SUBIACO OVAL STABILIZERS . . . . . . . . . . . . . . . .
. 129
7 THE ADELAIDE OVAL STABILIZERS 133
7
.
1 TH
EAD
E
L
A
I
D
EOV
A
L ........................... 1
3
3
7.2 A POLYNOMIAL EQUATION FOR THE ADELAIDE OVAL . . . . . . . . . . . .
133
7.3 IRREDUCIBILITY OF THE CURVE . . . . . . . . . . . . . . . . . . . .
. . . 136
7
.
4 TH
ECO
MP
L
E
T
EOV
A
LS
T
A
B
I
L
I
Z
E
R..................... 1
3
7
CONTENTS
VII
8TH
E
P
A
Y
N
E
Q
-CLANS 141
8.1 THE MONOMIAL
Q
-
CL
A
N
S......................... 1
4
1
8
.
2 TH
EEX
A
MP
L
E
SOFPA
Y
N
E ........................ 1
4
1
8
.
3 TH
ECO
MP
L
E
T
EPA
Y
N
EOV
A
LST
A
B
I
L
I
Z
E
R
S................. 1
4
4
9 OTHER GOOD STUFF 149
9
.
1 S
P
R
E
A
D
SAN
DOV
O
I
D
S .......................... 1
4
9
9.2 THE GEOMETRIC CONSTRUCTION OF J. A. THAS . . . . . . . . . . . . . .
151
9
.
3 ARE
S
U
L
TOFN.L.J
O
H
N
S
O
N....................... 1
5
3
9.4 TRANSLATION (HYPER)OVALS AND
*
-
FL
O
C
K
S ............... 1
5
4
9
.
5 MO
N
O
MI
A
LH
Y
PE
R
O
V
A
L
S.......................... 1
5
6
9
.
6 CO
N
C
L
U
S
I
O
NAN
DOP
E
NPR
O
B
L
E
MS .................... 1
5
7
BIBLIOGRAPHY 159
INDEX 165
|
any_adam_object | 1 |
author | Cardinali, Ilaria Payne, Stanley E. |
author_facet | Cardinali, Ilaria Payne, Stanley E. |
author_role | aut aut |
author_sort | Cardinali, Ilaria |
author_variant | i c ic s e p se sep |
building | Verbundindex |
bvnumber | BV025497012 |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)255538462 (DE-599)BVBBV025497012 |
dewey-full | 516.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.11 |
dewey-search | 516.11 |
dewey-sort | 3516.11 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01442nam a2200385 c 4500</leader><controlfield tag="001">BV025497012</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2007 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984398600</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764385071</subfield><subfield code="9">978-3-7643-8507-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764385073</subfield><subfield code="9">3-7643-8507-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255538462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025497012</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.11</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cardinali, Ilaria</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">q-Clan geometries in characteristic 2</subfield><subfield code="c">Ilaria Cardinali ; Stanley E. Payne</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 166 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frontiers in mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 159 - 164</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verallgemeinertes Viereck</subfield><subfield code="0">(DE-588)4187518-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verallgemeinertes Viereck</subfield><subfield code="0">(DE-588)4187518-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Payne, Stanley E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020109049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020109049</subfield></datafield></record></collection> |
id | DE-604.BV025497012 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:35:21Z |
institution | BVB |
isbn | 9783764385071 3764385073 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020109049 |
oclc_num | 255538462 |
open_access_boolean | |
owner | DE-11 DE-188 |
owner_facet | DE-11 DE-188 |
physical | XIV, 166 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
series2 | Frontiers in mathematics |
spelling | Cardinali, Ilaria Verfasser aut q-Clan geometries in characteristic 2 Ilaria Cardinali ; Stanley E. Payne Basel [u.a.] Birkhäuser 2007 XIV, 166 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Frontiers in mathematics Literaturverz. S. 159 - 164 Verallgemeinertes Viereck (DE-588)4187518-7 gnd rswk-swf Verallgemeinertes Viereck (DE-588)4187518-7 s DE-604 Payne, Stanley E. Verfasser aut DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020109049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cardinali, Ilaria Payne, Stanley E. q-Clan geometries in characteristic 2 Verallgemeinertes Viereck (DE-588)4187518-7 gnd |
subject_GND | (DE-588)4187518-7 |
title | q-Clan geometries in characteristic 2 |
title_auth | q-Clan geometries in characteristic 2 |
title_exact_search | q-Clan geometries in characteristic 2 |
title_full | q-Clan geometries in characteristic 2 Ilaria Cardinali ; Stanley E. Payne |
title_fullStr | q-Clan geometries in characteristic 2 Ilaria Cardinali ; Stanley E. Payne |
title_full_unstemmed | q-Clan geometries in characteristic 2 Ilaria Cardinali ; Stanley E. Payne |
title_short | q-Clan geometries in characteristic 2 |
title_sort | q clan geometries in characteristic 2 |
topic | Verallgemeinertes Viereck (DE-588)4187518-7 gnd |
topic_facet | Verallgemeinertes Viereck |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020109049&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cardinaliilaria qclangeometriesincharacteristic2 AT paynestanleye qclangeometriesincharacteristic2 |