Interpretative aspects of quantum mechanics: Matteo Campanella's mathematical studies
1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2020]
|
Schriftenreihe: | UNIPA Springer series
|
Schlagworte: | |
Online-Zugang: | Cover |
Zusammenfassung: | 1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D. This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category |
Beschreibung: | xv, 143 Seiten |
ISBN: | 9783030442064 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV046999154 | ||
003 | DE-604 | ||
005 | 20220217 | ||
007 | t | ||
008 | 201116s2020 sz |||| 00||| eng d | ||
020 | |a 9783030442064 |9 978-3-030-44206-4 | ||
035 | |a (OCoLC)1198712868 | ||
035 | |a (DE-599)KXP1736072501 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-703 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
100 | 1 | |a Campanella, Matteo |d 1947-2016 |e Verfasser |0 (DE-588)121996963X |4 aut | |
245 | 1 | 0 | |a Interpretative aspects of quantum mechanics |b Matteo Campanella's mathematical studies |c Matteo Campanella, David Jou, Maria Stella Mongiovì |
264 | 1 | |a Cham, Switzerland |b Springer |c [2020] | |
300 | |a xv, 143 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a UNIPA Springer series | |
520 | 3 | |a 1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D. | |
520 | 3 | |a This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category | |
653 | 0 | |a Mathematical physics | |
653 | 0 | |a Quantum physics | |
700 | 1 | |a Jou, David |d 1953- |e Verfasser |0 (DE-588)129374679 |4 aut | |
700 | 1 | |a Mongiovì, Maria Stella |e Verfasser |0 (DE-588)1229443320 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-3-030-44207-1 |z 978-3-030-44207-1 |
856 | 4 | 2 | |m V:DE-576;X:SPRINGER |q image/jpeg |u http://swbplus.bsz-bw.de/bsz1728470064cov.htm |v 20200917175825 |3 Cover |
999 | |a oai:aleph.bib-bvb.de:BVB01-032406827 |
Datensatz im Suchindex
_version_ | 1804181946651115520 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campanella, Matteo 1947-2016 Jou, David 1953- Mongiovì, Maria Stella |
author_GND | (DE-588)121996963X (DE-588)129374679 (DE-588)1229443320 |
author_facet | Campanella, Matteo 1947-2016 Jou, David 1953- Mongiovì, Maria Stella |
author_role | aut aut aut |
author_sort | Campanella, Matteo 1947-2016 |
author_variant | m c mc d j dj m s m ms msm |
building | Verbundindex |
bvnumber | BV046999154 |
classification_rvk | UK 1200 |
ctrlnum | (OCoLC)1198712868 (DE-599)KXP1736072501 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02975nam a2200397 c 4500</leader><controlfield tag="001">BV046999154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">201116s2020 sz |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030442064</subfield><subfield code="9">978-3-030-44206-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1198712868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1736072501</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campanella, Matteo</subfield><subfield code="d">1947-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121996963X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpretative aspects of quantum mechanics</subfield><subfield code="b">Matteo Campanella's mathematical studies</subfield><subfield code="c">Matteo Campanella, David Jou, Maria Stella Mongiovì</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 143 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">UNIPA Springer series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jou, David</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129374679</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mongiovì, Maria Stella</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1229443320</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-030-44207-1</subfield><subfield code="z">978-3-030-44207-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-576;X:SPRINGER</subfield><subfield code="q">image/jpeg</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz1728470064cov.htm</subfield><subfield code="v">20200917175825</subfield><subfield code="3">Cover</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032406827</subfield></datafield></record></collection> |
id | DE-604.BV046999154 |
illustrated | Not Illustrated |
index_date | 2024-07-03T15:56:13Z |
indexdate | 2024-07-10T08:59:44Z |
institution | BVB |
isbn | 9783030442064 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032406827 |
oclc_num | 1198712868 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | xv, 143 Seiten |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer |
record_format | marc |
series2 | UNIPA Springer series |
spelling | Campanella, Matteo 1947-2016 Verfasser (DE-588)121996963X aut Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì Cham, Switzerland Springer [2020] xv, 143 Seiten txt rdacontent n rdamedia nc rdacarrier UNIPA Springer series 1 Fundamental assumptions -- 2 The state of a quantum system as a subsystem of a composite system -- 3 Relation between the state of a system as isolated and as open -- 4 Universality of the probability function -- 5 Appendix A -- 6 Appendix B -- 7 Appendix C -- 8 Appendix D. This book presents a selection of Prof. Matteo Campanella’s writings on the interpretative aspects of quantum mechanics and on a possible derivation of Born's rule – one of the key principles of the probabilistic interpretation of quantum mechanics – that is independent of any priori probabilistic interpretation. This topic is of fundamental interest, and as such is currently an active area of research. Starting from a natural method of defining such a state, Campanella found that it can be characterized through a partial density operator, which occurs as a consequence of the formalism and of a number of reasonable assumptions connected with the notion of a state. The book demonstrates that the density operator arises as an orbit invariant that has to be interpreted as probabilistic, and that its quantitative implementation is equivalent to Born's rule. The appendices present various mathematical details, which would have interrupted the continuity of the discussion if they had been included in the main text. For instance, they discuss baricentric coordinates, mapping between Hilbert spaces, tensor products between linear spaces, orbits of vectors of a linear space under the action of its structure group, and the class of Hilbert space as a category Mathematical physics Quantum physics Jou, David 1953- Verfasser (DE-588)129374679 aut Mongiovì, Maria Stella Verfasser (DE-588)1229443320 aut Erscheint auch als Online-Ausgabe 10.1007/978-3-030-44207-1 978-3-030-44207-1 V:DE-576;X:SPRINGER image/jpeg http://swbplus.bsz-bw.de/bsz1728470064cov.htm 20200917175825 Cover |
spellingShingle | Campanella, Matteo 1947-2016 Jou, David 1953- Mongiovì, Maria Stella Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies |
title | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies |
title_auth | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies |
title_exact_search | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies |
title_exact_search_txtP | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies |
title_full | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì |
title_fullStr | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì |
title_full_unstemmed | Interpretative aspects of quantum mechanics Matteo Campanella's mathematical studies Matteo Campanella, David Jou, Maria Stella Mongiovì |
title_short | Interpretative aspects of quantum mechanics |
title_sort | interpretative aspects of quantum mechanics matteo campanella s mathematical studies |
title_sub | Matteo Campanella's mathematical studies |
url | http://swbplus.bsz-bw.de/bsz1728470064cov.htm |
work_keys_str_mv | AT campanellamatteo interpretativeaspectsofquantummechanicsmatteocampanellasmathematicalstudies AT joudavid interpretativeaspectsofquantummechanicsmatteocampanellasmathematicalstudies AT mongiovimariastella interpretativeaspectsofquantummechanicsmatteocampanellasmathematicalstudies |