Non-Local Cell Adhesion Models: Symmetries and Bifurcations in 1-D
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing
2021
Cham Springer |
Ausgabe: | 1st ed. 2021 |
Schriftenreihe: | CMS/CAIMS Books in Mathematics
1 |
Schlagworte: | |
Online-Zugang: | BTU01 FAB01 FHD01 FHN01 FHR01 FRO01 FWS01 FWS02 HTW01 TUM01 UBM01 UBT01 UBW01 UBY01 UEI01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (VIII, 152 p. 35 illus., 15 illus. in color) |
ISBN: | 9783030671112 |
ISSN: | 2730-650X |
DOI: | 10.1007/978-3-030-67111-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV047390223 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 210728s2021 |||| o||u| ||||||eng d | ||
020 | |a 9783030671112 |c Online |9 978-3-030-67111-2 | ||
024 | 7 | |a 10.1007/978-3-030-67111-2 |2 doi | |
035 | |a (ZDB-2-SMA)9783030671112 | ||
035 | |a (OCoLC)1263260529 | ||
035 | |a (DE-599)BVBBV047390223 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-1043 |a DE-898 |a DE-861 |a DE-188 |a DE-523 |a DE-863 |a DE-1050 |a DE-20 |a DE-862 |a DE-92 |a DE-824 |a DE-703 |a DE-706 |a DE-739 |a DE-634 | ||
082 | 0 | |a 570.285 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Buttenschön, Andreas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Local Cell Adhesion Models |b Symmetries and Bifurcations in 1-D |c by Andreas Buttenschön, Thomas Hillen |
250 | |a 1st ed. 2021 | ||
264 | 1 | |a Cham |b Springer International Publishing |c 2021 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (VIII, 152 p. 35 illus., 15 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a CMS/CAIMS Books in Mathematics |v 1 |x 2730-650X | |
650 | 4 | |a Mathematical and Computational Biology | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Biomathematics | |
650 | 4 | |a Mathematical models | |
700 | 1 | |a Hillen, Thomas |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-67110-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-67112-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-030-67113-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-030-67111-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2021_Fremddaten | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032791559 | ||
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FAB01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FHD01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FHN01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FHR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FRO01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FWS01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l FWS02 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l HTW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l UBY01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l UEI01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-030-67111-2 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 915307 |
---|---|
_version_ | 1806194865449467904 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Buttenschön, Andreas Hillen, Thomas |
author_facet | Buttenschön, Andreas Hillen, Thomas |
author_role | aut aut |
author_sort | Buttenschön, Andreas |
author_variant | a b ab t h th |
building | Verbundindex |
bvnumber | BV047390223 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783030671112 (OCoLC)1263260529 (DE-599)BVBBV047390223 |
dewey-full | 570.285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.285 |
dewey-search | 570.285 |
dewey-sort | 3570.285 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
discipline_str_mv | Biologie Mathematik |
doi_str_mv | 10.1007/978-3-030-67111-2 |
edition | 1st ed. 2021 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03349nmm a2200661zcb4500</leader><controlfield tag="001">BV047390223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">210728s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030671112</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-67111-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-030-67111-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783030671112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1263260529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047390223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.285</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buttenschön, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Local Cell Adhesion Models</subfield><subfield code="b">Symmetries and Bifurcations in 1-D</subfield><subfield code="c">by Andreas Buttenschön, Thomas Hillen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 152 p. 35 illus., 15 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">CMS/CAIMS Books in Mathematics</subfield><subfield code="v">1</subfield><subfield code="x">2730-650X</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hillen, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-67110-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-67112-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-030-67113-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2021_Fremddaten</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032791559</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FRO01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-030-67111-2</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047390223 |
illustrated | Not Illustrated |
index_date | 2024-07-03T17:49:58Z |
indexdate | 2024-08-01T16:14:10Z |
institution | BVB |
isbn | 9783030671112 |
issn | 2730-650X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032791559 |
oclc_num | 1263260529 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1043 DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1043 DE-898 DE-BY-UBR DE-861 DE-188 DE-523 DE-863 DE-BY-FWS DE-1050 DE-20 DE-862 DE-BY-FWS DE-92 DE-824 DE-703 DE-706 DE-739 DE-634 |
physical | 1 Online-Ressource (VIII, 152 p. 35 illus., 15 illus. in color) |
psigel | ZDB-2-SMA ZDB-2-SMA_2021_Fremddaten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer International Publishing Springer |
record_format | marc |
series2 | CMS/CAIMS Books in Mathematics |
spellingShingle | Buttenschön, Andreas Hillen, Thomas Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Biomathematics Mathematical models |
title | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D |
title_auth | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D |
title_exact_search | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D |
title_exact_search_txtP | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D |
title_full | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D by Andreas Buttenschön, Thomas Hillen |
title_fullStr | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D by Andreas Buttenschön, Thomas Hillen |
title_full_unstemmed | Non-Local Cell Adhesion Models Symmetries and Bifurcations in 1-D by Andreas Buttenschön, Thomas Hillen |
title_short | Non-Local Cell Adhesion Models |
title_sort | non local cell adhesion models symmetries and bifurcations in 1 d |
title_sub | Symmetries and Bifurcations in 1-D |
topic | Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Biomathematics Mathematical models |
topic_facet | Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Biomathematics Mathematical models |
url | https://doi.org/10.1007/978-3-030-67111-2 |
work_keys_str_mv | AT buttenschonandreas nonlocalcelladhesionmodelssymmetriesandbifurcationsin1d AT hillenthomas nonlocalcelladhesionmodelssymmetriesandbifurcationsin1d |