Solitons:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1980
|
Schriftenreihe: | Topics in Current Physics
17 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Until the beginning of this decade the number of significant exactly soluble problems in physics was limited to a very few: the classical or quanti sed harmonic oscillator, the linearised many-body problem, the quanti sed hydrogen atom, Newton's solution of the planetary orbit problem, Onsager's solution of the two-dimensional Ising problem, almost exhaust the list. Now the situation is quite different. We have a large number of exactly soluble nonlinear systems of physical significance and the number of these is growing steadily. Recent examples include a limited solution of Ein stein's field equations!, an apparently exact solution of the quantised sine-Gordon 2 equation u - U = sin(u) which establishes connections with the Ising models , xx tt 3 and a solution of the equations of motion of a rigid body in g dimensions . This book is concerned with problems such as these. But more specifically it is concerned with solitons. These mathematical objects are exact, analytical, solutions of nonlinear wave or evolution equations like the sine-Gordon equation (s-G) or the Korteweg-de Vries equation (KdV) u + 6uu + u = O. The discovery by Gardner, t x xxx |
Beschreibung: | 1 Online-Ressource (XVIII, 392 p) |
ISBN: | 9783642814488 9783642814501 |
ISSN: | 0342-6793 |
DOI: | 10.1007/978-3-642-81448-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413721 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1980 |||| o||u| ||||||eng d | ||
020 | |a 9783642814488 |c Online |9 978-3-642-81448-8 | ||
020 | |a 9783642814501 |c Print |9 978-3-642-81450-1 | ||
024 | 7 | |a 10.1007/978-3-642-81448-8 |2 doi | |
035 | |a (OCoLC)863818737 | ||
035 | |a (DE-599)BVBBV042413721 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Bullough, Robin K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solitons |c edited by Robin K. Bullough, Philip J. Caudrey |
246 | 1 | 3 | |a With contributions by numerous experts |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1980 | |
300 | |a 1 Online-Ressource (XVIII, 392 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Topics in Current Physics |v 17 |x 0342-6793 | |
500 | |a Until the beginning of this decade the number of significant exactly soluble problems in physics was limited to a very few: the classical or quanti sed harmonic oscillator, the linearised many-body problem, the quanti sed hydrogen atom, Newton's solution of the planetary orbit problem, Onsager's solution of the two-dimensional Ising problem, almost exhaust the list. Now the situation is quite different. We have a large number of exactly soluble nonlinear systems of physical significance and the number of these is growing steadily. Recent examples include a limited solution of Ein stein's field equations!, an apparently exact solution of the quantised sine-Gordon 2 equation u - U = sin(u) which establishes connections with the Ising models , xx tt 3 and a solution of the equations of motion of a rigid body in g dimensions . This book is concerned with problems such as these. But more specifically it is concerned with solitons. These mathematical objects are exact, analytical, solutions of nonlinear wave or evolution equations like the sine-Gordon equation (s-G) or the Korteweg-de Vries equation (KdV) u + 6uu + u = O. The discovery by Gardner, t x xxx | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Quantentheorie | |
700 | 1 | |a Caudrey, Philip J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-81448-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849214 |
Datensatz im Suchindex
_version_ | 1804153078406971392 |
---|---|
any_adam_object | |
author | Bullough, Robin K. |
author_facet | Bullough, Robin K. |
author_role | aut |
author_sort | Bullough, Robin K. |
author_variant | r k b rk rkb |
building | Verbundindex |
bvnumber | BV042413721 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863818737 (DE-599)BVBBV042413721 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-81448-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02644nmm a2200445zcb4500</leader><controlfield tag="001">BV042413721</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642814488</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-81448-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642814501</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-81450-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-81448-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863818737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413721</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bullough, Robin K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons</subfield><subfield code="c">edited by Robin K. Bullough, Philip J. Caudrey</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">With contributions by numerous experts</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 392 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Topics in Current Physics</subfield><subfield code="v">17</subfield><subfield code="x">0342-6793</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Until the beginning of this decade the number of significant exactly soluble problems in physics was limited to a very few: the classical or quanti sed harmonic oscillator, the linearised many-body problem, the quanti sed hydrogen atom, Newton's solution of the planetary orbit problem, Onsager's solution of the two-dimensional Ising problem, almost exhaust the list. Now the situation is quite different. We have a large number of exactly soluble nonlinear systems of physical significance and the number of these is growing steadily. Recent examples include a limited solution of Ein stein's field equations!, an apparently exact solution of the quantised sine-Gordon 2 equation u - U = sin(u) which establishes connections with the Ising models , xx tt 3 and a solution of the equations of motion of a rigid body in g dimensions . This book is concerned with problems such as these. But more specifically it is concerned with solitons. These mathematical objects are exact, analytical, solutions of nonlinear wave or evolution equations like the sine-Gordon equation (s-G) or the Korteweg-de Vries equation (KdV) u + 6uu + u = O. The discovery by Gardner, t x xxx</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caudrey, Philip J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-81448-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849214</subfield></datafield></record></collection> |
id | DE-604.BV042413721 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:53Z |
institution | BVB |
isbn | 9783642814488 9783642814501 |
issn | 0342-6793 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849214 |
oclc_num | 863818737 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVIII, 392 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Topics in Current Physics |
spelling | Bullough, Robin K. Verfasser aut Solitons edited by Robin K. Bullough, Philip J. Caudrey With contributions by numerous experts Berlin, Heidelberg Springer Berlin Heidelberg 1980 1 Online-Ressource (XVIII, 392 p) txt rdacontent c rdamedia cr rdacarrier Topics in Current Physics 17 0342-6793 Until the beginning of this decade the number of significant exactly soluble problems in physics was limited to a very few: the classical or quanti sed harmonic oscillator, the linearised many-body problem, the quanti sed hydrogen atom, Newton's solution of the planetary orbit problem, Onsager's solution of the two-dimensional Ising problem, almost exhaust the list. Now the situation is quite different. We have a large number of exactly soluble nonlinear systems of physical significance and the number of these is growing steadily. Recent examples include a limited solution of Ein stein's field equations!, an apparently exact solution of the quantised sine-Gordon 2 equation u - U = sin(u) which establishes connections with the Ising models , xx tt 3 and a solution of the equations of motion of a rigid body in g dimensions . This book is concerned with problems such as these. But more specifically it is concerned with solitons. These mathematical objects are exact, analytical, solutions of nonlinear wave or evolution equations like the sine-Gordon equation (s-G) or the Korteweg-de Vries equation (KdV) u + 6uu + u = O. The discovery by Gardner, t x xxx Physics Quantum theory Theoretical, Mathematical and Computational Physics Elementary Particles, Quantum Field Theory Quantentheorie Caudrey, Philip J. Sonstige oth https://doi.org/10.1007/978-3-642-81448-8 Verlag Volltext |
spellingShingle | Bullough, Robin K. Solitons Physics Quantum theory Theoretical, Mathematical and Computational Physics Elementary Particles, Quantum Field Theory Quantentheorie |
title | Solitons |
title_alt | With contributions by numerous experts |
title_auth | Solitons |
title_exact_search | Solitons |
title_full | Solitons edited by Robin K. Bullough, Philip J. Caudrey |
title_fullStr | Solitons edited by Robin K. Bullough, Philip J. Caudrey |
title_full_unstemmed | Solitons edited by Robin K. Bullough, Philip J. Caudrey |
title_short | Solitons |
title_sort | solitons |
topic | Physics Quantum theory Theoretical, Mathematical and Computational Physics Elementary Particles, Quantum Field Theory Quantentheorie |
topic_facet | Physics Quantum theory Theoretical, Mathematical and Computational Physics Elementary Particles, Quantum Field Theory Quantentheorie |
url | https://doi.org/10.1007/978-3-642-81448-8 |
work_keys_str_mv | AT bulloughrobink solitons AT caudreyphilipj solitons AT bulloughrobink withcontributionsbynumerousexperts AT caudreyphilipj withcontributionsbynumerousexperts |